import gradio as gr import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel import os # Get the Hugging Face token from the environment variable HF_TOKEN = os.environ.get("HF_TOKEN") # Load the tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained('gpt2', use_auth_token=HF_TOKEN) model = GPT2LMHeadModel.from_pretrained('skylersterling/TopicGPT', use_auth_token=HF_TOKEN) model.eval() model.to('cpu') # Define the function that generates text from a prompt def generate_text(prompt, temperature): print(prompt) prompt_with_eos = "#CONTEXT# " + prompt + " #TOPIC# " # Add the string "EOS" to the end of the prompt input_tokens = tokenizer.encode(prompt_with_eos, return_tensors='pt') input_tokens = input_tokens.to('cpu') generated_text = prompt_with_eos # Start with the initial prompt plus "EOS" prompt_length = len(generated_text) for _ in range(80): # Adjust the range to control the number of tokens generated with torch.no_grad(): outputs = model(input_tokens) predictions = outputs.logits[:, -1, :] / temperature next_token = torch.multinomial(torch.softmax(predictions, dim=-1), 1) input_tokens = torch.cat((input_tokens, next_token), dim=1) decoded_token = tokenizer.decode(next_token.item()) generated_text += decoded_token # Append the new token to the generated text if decoded_token == "#": # Stop if the end of sequence token is generated break yield generated_text[prompt_length:] # Yield the generated text excluding the initial prompt plus "EOS" # Create a Gradio interface with a text input and a slider for temperature interface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(lines=2, placeholder="Enter your prompt here..."), gr.Slider(minimum=0.1, maximum=1.0, value=0.3, label="Temperature"), ], outputs=gr.Textbox(), live=False, description="TopicGPT processes the input and returns a reasonably accurate guess of the topic/theme of a given conversation." ) interface.launch()