preconsultai / app.py
siyah1's picture
Update app.py
a407a02 verified
import streamlit as st
import pandas as pd
import json
import os
from typing import Union, List, Dict, Optional, Tuple
from groq import Groq
from duckduckgo_search import DDGS
from datetime import datetime, timedelta
import time
import numpy as np
import pickle
from dataclasses import dataclass, asdict
import hashlib
from collections import defaultdict
# Set page configuration
st.set_page_config(
page_title="MedAssist - AI Medical Preconsultation",
layout="wide",
initial_sidebar_state="expanded",
page_icon="πŸ₯"
)
# Enhanced CSS for medical theme
st.markdown("""
<style>
/* Medical theme styling */
html, body, .stApp, .main {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: #ffffff !important;
}
.medical-header {
background: linear-gradient(45deg, #2c5aa0, #4a90e2) !important;
color: white !important;
padding: 2rem !important;
border-radius: 15px !important;
text-align: center !important;
margin-bottom: 2rem !important;
box-shadow: 0 8px 32px rgba(31, 38, 135, 0.37) !important;
}
.chat-container {
background: rgba(255, 255, 255, 0.1) !important;
border-radius: 15px !important;
padding: 1rem !important;
backdrop-filter: blur(10px) !important;
border: 1px solid rgba(255, 255, 255, 0.2) !important;
margin-bottom: 1rem !important;
max-height: 500px !important;
overflow-y: auto !important;
}
.user-message {
background: linear-gradient(45deg, #4CAF50, #66BB6A) !important;
color: white !important;
padding: 1rem !important;
border-radius: 15px 15px 5px 15px !important;
margin: 0.5rem 0 !important;
margin-left: 2rem !important;
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.4) !important;
}
.assistant-message {
background: rgba(255, 255, 255, 0.15) !important;
color: white !important;
padding: 1rem !important;
border-radius: 15px 15px 15px 5px !important;
margin: 0.5rem 0 !important;
margin-right: 2rem !important;
border-left: 4px solid #2196F3 !important;
backdrop-filter: blur(5px) !important;
}
.agent-status-card {
background: rgba(255, 255, 255, 0.15) !important;
border: 1px solid rgba(255, 255, 255, 0.3) !important;
border-radius: 12px !important;
padding: 1rem !important;
margin: 0.5rem 0 !important;
backdrop-filter: blur(5px) !important;
}
.evolution-metrics {
background: linear-gradient(45deg, #FF6B6B, #FF8E8E) !important;
color: white !important;
padding: 1rem !important;
border-radius: 10px !important;
margin: 0.5rem 0 !important;
}
.warning-box {
background: rgba(255, 152, 0, 0.2) !important;
border: 2px solid #FF9800 !important;
border-radius: 10px !important;
padding: 1.5rem !important;
margin: 1rem 0 !important;
color: white !important;
}
.stButton > button {
background: linear-gradient(45deg, #2196F3, #64B5F6) !important;
color: white !important;
border: none !important;
border-radius: 25px !important;
font-weight: bold !important;
padding: 0.75rem 2rem !important;
transition: all 0.3s ease !important;
}
.stButton > button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 8px 25px rgba(33, 150, 243, 0.6) !important;
}
.chat-input {
position: sticky !important;
bottom: 0 !important;
background: rgba(255, 255, 255, 0.1) !important;
padding: 1rem !important;
border-radius: 15px !important;
backdrop-filter: blur(10px) !important;
}
.spinner {
border: 2px solid rgba(255, 255, 255, 0.3);
border-radius: 50%;
border-top: 2px solid #ffffff;
width: 20px;
height: 20px;
animation: spin 1s linear infinite;
display: inline-block;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
</style>
""", unsafe_allow_html=True)
@dataclass
class ConversationEntry:
"""Data structure for storing conversation entries"""
timestamp: str
user_input: str
assistant_response: str
symptoms: List[str]
severity_score: float
confidence_score: float
search_queries_used: List[str]
user_feedback: Optional[int] = None # 1-5 rating
was_helpful: Optional[bool] = None
@dataclass
class AgentPerformance:
"""Track agent performance metrics"""
agent_name: str
total_queries: int = 0
successful_responses: int = 0
average_confidence: float = 0.0
user_satisfaction: float = 0.0
learning_rate: float = 0.01
expertise_areas: Dict[str, float] = None
def __post_init__(self):
if self.expertise_areas is None:
self.expertise_areas = defaultdict(float)
class MedicalSearchTool:
"""Enhanced medical search tool with domain-specific optimization"""
def __init__(self):
self.ddgs = DDGS()
self.medical_sources = [
"mayoclinic.org", "webmd.com", "healthline.com", "medlineplus.gov",
"nih.gov", "who.int", "cdc.gov", "ncbi.nlm.nih.gov"
]
def search_medical_info(self, query: str, search_type: str = "symptoms") -> str:
"""Search for medical information with safety considerations"""
try:
# Add medical context to search
medical_queries = {
"symptoms": f"medical symptoms {query} causes diagnosis",
"treatment": f"medical treatment {query} therapy options",
"prevention": f"disease prevention {query} health tips",
"general": f"medical information {query} health facts"
}
enhanced_query = medical_queries.get(search_type, medical_queries["general"])
# Perform search with medical focus
search_results = list(self.ddgs.text(
enhanced_query,
max_results=5,
region='wt-wt',
safesearch='on'
))
if not search_results:
return "No relevant medical information found. Please consult with a healthcare professional."
# Filter and format results with medical authority preference
formatted_results = []
for idx, result in enumerate(search_results, 1):
title = result.get('title', 'No title')
snippet = result.get('body', 'No description')
url = result.get('href', 'No URL')
# Prioritize trusted medical sources
source_trust = "⭐" if any(source in url for source in self.medical_sources) else ""
formatted_results.append(
f"{idx}. {source_trust} {title}\n"
f" Information: {snippet}\n"
f" Source: {url}\n"
)
return "\n".join(formatted_results)
except Exception as e:
return f"Search temporarily unavailable: {str(e)}"
class GroqLLM:
"""Medical-optimized LLM client"""
def __init__(self, model_name="openai/gpt-oss-20b"):
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
self.model_name = model_name
self.medical_context = """
You are a medical AI assistant for preconsultation guidance.
IMPORTANT: Always remind users that this is not a substitute for professional medical advice.
Provide helpful information while emphasizing the need for proper medical consultation.
"""
def generate_response(self, prompt: str, conversation_history: List[str] = None) -> Tuple[str, float]:
"""Generate response with confidence scoring"""
try:
# Build context with conversation history
context = self.medical_context
if conversation_history:
context += f"\n\nConversation History:\n{chr(10).join(conversation_history[-5:])}"
full_prompt = f"{context}\n\nUser Query: {prompt}\n\nPlease provide helpful medical guidance while emphasizing the importance of professional medical consultation."
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": full_prompt}],
temperature=0.3, # Lower temperature for medical accuracy
max_tokens=1500,
stream=False
)
response = completion.choices[0].message.content if completion.choices else "Unable to generate response"
# Calculate confidence score based on response characteristics
confidence = self._calculate_confidence(response, prompt)
return response, confidence
except Exception as e:
return f"LLM temporarily unavailable: {str(e)}", 0.0
def _calculate_confidence(self, response: str, query: str) -> float:
"""Calculate confidence score based on response quality"""
confidence_factors = 0.0
# Check for medical disclaimers (increases confidence in safety)
if any(phrase in response.lower() for phrase in ["consult", "doctor", "medical professional", "healthcare provider"]):
confidence_factors += 0.3
# Check response length (adequate detail)
if 200 <= len(response) <= 1000:
confidence_factors += 0.2
# Check for structured information
if any(marker in response for marker in ["1.", "β€’", "-", "**"]):
confidence_factors += 0.2
# Check for balanced information (not overly certain)
if any(phrase in response.lower() for phrase in ["may", "might", "could", "possible", "typically"]):
confidence_factors += 0.3
return min(confidence_factors, 1.0)
class EvolutionaryMedicalAgent:
"""Evolutionary agent with reinforcement learning capabilities"""
def __init__(self, agent_id: str, specialization: str):
self.agent_id = agent_id
self.specialization = specialization
self.performance = AgentPerformance(agent_name=agent_id)
self.knowledge_base = defaultdict(float)
self.response_patterns = {}
self.learning_memory = []
def process_query(self, query: str, context: str, search_results: str) -> Tuple[str, float]:
"""Process query and adapt based on specialization"""
# Update query count
self.performance.total_queries += 1
# Extract key terms for learning
key_terms = self._extract_medical_terms(query)
# Build specialized response based on agent's expertise
specialized_prompt = f"""
As a {self.specialization} specialist, analyze this medical query:
Query: {query}
Context: {context}
Search Results: {search_results}
Provide specialized insights based on your expertise in {self.specialization}.
Always emphasize the need for professional medical consultation.
"""
# Simulate processing (in real implementation, this would use the LLM)
response = f"Based on my specialization in {self.specialization}, {query.lower()} suggests several considerations. However, please consult with a healthcare professional for proper diagnosis and treatment."
confidence = 0.7 + (self.performance.average_confidence * 0.3)
# Update expertise in relevant areas
for term in key_terms:
self.knowledge_base[term] += 0.1
return response, confidence
def update_from_feedback(self, query: str, response: str, feedback_score: int, was_helpful: bool):
"""Update agent based on user feedback (reinforcement learning)"""
# Calculate reward signal
reward = (feedback_score - 3) / 2 # Convert 1-5 scale to -1 to 1
if was_helpful:
reward += 0.2
# Update performance metrics
if feedback_score >= 3:
self.performance.successful_responses += 1
# Update satisfaction and confidence
self.performance.user_satisfaction = (
(self.performance.user_satisfaction * (self.performance.total_queries - 1) + feedback_score) /
self.performance.total_queries
)
# Store learning memory
self.learning_memory.append({
'query': query,
'response': response,
'reward': reward,
'timestamp': datetime.now().isoformat()
})
# Adapt learning rate based on performance
if self.performance.user_satisfaction > 4.0:
self.performance.learning_rate *= 0.95 # Slow down learning when performing well
elif self.performance.user_satisfaction < 3.0:
self.performance.learning_rate *= 1.1 # Speed up learning when performing poorly
# Update expertise areas based on feedback
terms = self._extract_medical_terms(query)
for term in terms:
self.knowledge_base[term] += reward * self.performance.learning_rate
def _extract_medical_terms(self, text: str) -> List[str]:
"""Extract medical terms from text for learning"""
medical_keywords = [
'pain', 'fever', 'headache', 'nausea', 'fatigue', 'cough', 'cold', 'flu',
'diabetes', 'hypertension', 'infection', 'allergy', 'asthma', 'arthritis',
'anxiety', 'depression', 'insomnia', 'migraine', 'rash', 'swelling'
]
found_terms = []
text_lower = text.lower()
for term in medical_keywords:
if term in text_lower:
found_terms.append(term)
return found_terms
def get_expertise_summary(self) -> Dict:
"""Get summary of agent's learned expertise"""
return {
'specialization': self.specialization,
'total_queries': self.performance.total_queries,
'success_rate': (self.performance.successful_responses / max(1, self.performance.total_queries)) * 100,
'user_satisfaction': self.performance.user_satisfaction,
'learning_rate': self.performance.learning_rate,
'top_expertise_areas': dict(sorted(self.knowledge_base.items(), key=lambda x: x[1], reverse=True)[:5])
}
class MedicalConsultationSystem:
"""Main medical consultation system with evolutionary agents"""
def __init__(self):
self.llm = GroqLLM()
self.search_tool = MedicalSearchTool()
self.agents = self._initialize_agents()
self.conversation_history = []
self.conversation_data = []
def _initialize_agents(self) -> Dict[str, EvolutionaryMedicalAgent]:
"""Initialize specialized medical agents"""
return {
"general_practitioner": EvolutionaryMedicalAgent("gp", "General Practice Medicine"),
"symptom_analyzer": EvolutionaryMedicalAgent("symptom", "Symptom Analysis and Triage"),
"wellness_advisor": EvolutionaryMedicalAgent("wellness", "Preventive Care and Wellness"),
"mental_health": EvolutionaryMedicalAgent("mental", "Mental Health and Psychology"),
"emergency_assessor": EvolutionaryMedicalAgent("emergency", "Emergency Assessment and Urgent Care")
}
def process_medical_query(self, user_query: str) -> Dict:
"""Process medical query through evolutionary agent system"""
timestamp = datetime.now().isoformat()
# Determine which agents should handle this query
relevant_agents = self._select_relevant_agents(user_query)
# Search for medical information
search_results = self.search_tool.search_medical_info(user_query, "symptoms")
# Build conversation context
context = "\n".join(self.conversation_history[-3:]) if self.conversation_history else ""
# Get responses from relevant agents
agent_responses = {}
for agent_name in relevant_agents:
agent = self.agents[agent_name]
response, confidence = agent.process_query(user_query, context, search_results)
agent_responses[agent_name] = {
'response': response,
'confidence': confidence,
'specialization': agent.specialization
}
# Generate main LLM response
main_response, main_confidence = self.llm.generate_response(
f"{user_query}\n\nRelevant Information: {search_results}",
self.conversation_history
)
# Combine responses intelligently
final_response = self._combine_responses(main_response, agent_responses)
# Update conversation history
self.conversation_history.extend([
f"User: {user_query}",
f"Assistant: {final_response}"
])
# Extract symptoms for analysis
symptoms = self._extract_symptoms(user_query)
severity_score = self._assess_severity(user_query, symptoms)
# Store conversation data
conversation_entry = ConversationEntry(
timestamp=timestamp,
user_input=user_query,
assistant_response=final_response,
symptoms=symptoms,
severity_score=severity_score,
confidence_score=main_confidence,
search_queries_used=[user_query]
)
self.conversation_data.append(conversation_entry)
return {
'response': final_response,
'confidence': main_confidence,
'severity_score': severity_score,
'symptoms_detected': symptoms,
'agents_consulted': relevant_agents,
'agent_responses': agent_responses,
'search_performed': True
}
def _select_relevant_agents(self, query: str) -> List[str]:
"""Select most relevant agents for the query"""
query_lower = query.lower()
relevant_agents = ["general_practitioner"] # Always include GP
# Mental health keywords
mental_health_keywords = ["stress", "anxiety", "depression", "sleep", "mood", "worry", "panic", "sad"]
if any(keyword in query_lower for keyword in mental_health_keywords):
relevant_agents.append("mental_health")
# Emergency keywords
emergency_keywords = ["severe", "intense", "emergency", "urgent", "chest pain", "difficulty breathing", "blood"]
if any(keyword in query_lower for keyword in emergency_keywords):
relevant_agents.append("emergency_assessor")
# Wellness keywords
wellness_keywords = ["prevention", "healthy", "nutrition", "exercise", "lifestyle", "diet"]
if any(keyword in query_lower for keyword in wellness_keywords):
relevant_agents.append("wellness_advisor")
# Always include symptom analyzer for health queries
if any(keyword in query_lower for keyword in ["pain", "ache", "hurt", "symptom", "feel"]):
relevant_agents.append("symptom_analyzer")
return list(set(relevant_agents))
def _combine_responses(self, main_response: str, agent_responses: Dict) -> str:
"""Intelligently combine responses from multiple agents"""
if not agent_responses:
return main_response
combined = main_response + "\n\n**Specialist Insights:**\n"
for agent_name, data in agent_responses.items():
if data['confidence'] > 0.6: # Only include confident responses
combined += f"\nβ€’ **{data['specialization']}**: {data['response'][:200]}...\n"
return combined
def _extract_symptoms(self, query: str) -> List[str]:
"""Extract symptoms from user query"""
common_symptoms = [
'fever', 'headache', 'nausea', 'pain', 'cough', 'fatigue', 'dizziness',
'rash', 'swelling', 'shortness of breath', 'chest pain', 'abdominal pain'
]
query_lower = query.lower()
detected_symptoms = [symptom for symptom in common_symptoms if symptom in query_lower]
return detected_symptoms
def _assess_severity(self, query: str, symptoms: List[str]) -> float:
"""Assess severity of reported symptoms (0-10 scale)"""
severity_score = 0.0
query_lower = query.lower()
# High severity indicators
high_severity = ["severe", "intense", "unbearable", "emergency", "chest pain", "difficulty breathing"]
medium_severity = ["moderate", "persistent", "recurring", "worse", "concerning"]
if any(indicator in query_lower for indicator in high_severity):
severity_score += 7.0
elif any(indicator in query_lower for indicator in medium_severity):
severity_score += 4.0
else:
severity_score += 2.0
# Add points for multiple symptoms
severity_score += min(len(symptoms) * 0.5, 2.0)
return min(severity_score, 10.0)
def update_agent_performance(self, query_index: int, feedback_score: int, was_helpful: bool):
"""Update agent performance based on user feedback"""
if query_index < len(self.conversation_data):
entry = self.conversation_data[query_index]
entry.user_feedback = feedback_score
entry.was_helpful = was_helpful
# Update all agents that were involved in this query
for agent in self.agents.values():
agent.update_from_feedback(entry.user_input, entry.assistant_response, feedback_score, was_helpful)
def get_system_metrics(self) -> Dict:
"""Get comprehensive system performance metrics"""
total_conversations = len(self.conversation_data)
if total_conversations == 0:
return {"status": "No conversations yet"}
avg_confidence = np.mean([entry.confidence_score for entry in self.conversation_data])
avg_severity = np.mean([entry.severity_score for entry in self.conversation_data])
feedback_entries = [entry for entry in self.conversation_data if entry.user_feedback is not None]
avg_feedback = np.mean([entry.user_feedback for entry in feedback_entries]) if feedback_entries else 0
return {
"total_conversations": total_conversations,
"average_confidence": avg_confidence,
"average_severity": avg_severity,
"average_user_feedback": avg_feedback,
"agent_performance": {name: agent.get_expertise_summary() for name, agent in self.agents.items()}
}
# Initialize session state
if 'medical_system' not in st.session_state:
st.session_state.medical_system = MedicalConsultationSystem()
if 'chat_messages' not in st.session_state:
st.session_state.chat_messages = []
medical_system = st.session_state.medical_system
# Main interface
st.markdown("""
<div class="medical-header">
<h1>πŸ₯ MedAssist - AI Medical Preconsultation</h1>
<p>Advanced AI-powered medical guidance with evolutionary learning agents</p>
</div>
""", unsafe_allow_html=True)
# Medical disclaimer
st.markdown("""
<div class="warning-box">
<h3>⚠️ Important Medical Disclaimer</h3>
<p>This AI system provides general health information and is NOT a substitute for professional medical advice, diagnosis, or treatment. Always consult with qualified healthcare professionals for medical concerns. In case of emergency, contact emergency services immediately.</p>
</div>
""", unsafe_allow_html=True)
# Main layout
col1, col2 = st.columns([3, 1])
with col1:
st.markdown("### πŸ’¬ Medical Consultation Chat")
# Chat display area
chat_container = st.container()
with chat_container:
st.markdown('<div class="chat-container">', unsafe_allow_html=True)
for i, message in enumerate(st.session_state.chat_messages):
if message["role"] == "user":
st.markdown(f'<div class="user-message">πŸ‘€ <strong>You:</strong> {message["content"]}</div>', unsafe_allow_html=True)
else:
st.markdown(f'<div class="assistant-message">πŸ€– <strong>MedAssist:</strong> {message["content"]}</div>', unsafe_allow_html=True)
# Add feedback buttons for assistant messages
col_a, col_b, col_c = st.columns([1, 1, 8])
with col_a:
if st.button("πŸ‘", key=f"helpful_{i}"):
medical_system.update_agent_performance(i//2, 5, True)
st.success("Feedback recorded!")
with col_b:
if st.button("πŸ‘Ž", key=f"not_helpful_{i}"):
medical_system.update_agent_performance(i//2, 2, False)
st.info("Feedback recorded. We'll improve!")
st.markdown('</div>', unsafe_allow_html=True)
# Chat input
with st.container():
st.markdown('<div class="chat-input">', unsafe_allow_html=True)
user_input = st.text_input("Describe your symptoms or health concerns:",
placeholder="e.g., I've been having headaches for 3 days...",
key="medical_input")
col_send, col_clear = st.columns([1, 4])
with col_send:
send_message = st.button("Send πŸ“€", type="primary")
with col_clear:
if st.button("Clear Chat πŸ—‘οΈ"):
st.session_state.chat_messages = []
st.rerun()
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown("### πŸ€– AI Agent Status")
# Agent status display
for agent_name, agent in medical_system.agents.items():
expertise = agent.get_expertise_summary()
st.markdown(f"""
<div class="agent-status-card">
<h4>{agent.specialization}</h4>
<p><strong>Queries:</strong> {expertise['total_queries']}</p>
<p><strong>Success Rate:</strong> {expertise['success_rate']:.1f}%</p>
<p><strong>Satisfaction:</strong> {expertise['user_satisfaction']:.1f}/5</p>
<p><strong>Learning Rate:</strong> {expertise['learning_rate']:.3f}</p>
</div>
""", unsafe_allow_html=True)
st.markdown("### πŸ“Š System Metrics")
metrics = medical_system.get_system_metrics()
if "total_conversations" in metrics:
st.markdown(f"""
<div class="evolution-metrics">
<p><strong>Total Chats:</strong> {metrics['total_conversations']}</p>
<p><strong>Avg Confidence:</strong> {metrics['average_confidence']:.2f}</p>
<p><strong>Avg Severity:</strong> {metrics['average_severity']:.1f}/10</p>
<p><strong>User Rating:</strong> {metrics['average_user_feedback']:.1f}/5</p>
</div>
""", unsafe_allow_html=True)
# Process user input
if send_message and user_input:
# Add user message
st.session_state.chat_messages.append({"role": "user", "content": user_input})
# Show thinking indicator
with st.spinner("🧠 AI agents are analyzing your query..."):
# Process the query
result = medical_system.process_medical_query(user_input)
# Add assistant response
response_content = result['response']
# Add severity and confidence info
if result['severity_score'] > 7:
response_content += f"\n\n⚠️ **High severity detected ({result['severity_score']:.1f}/10). Please seek immediate medical attention if symptoms are severe.**"
elif result['severity_score'] > 4:
response_content += f"\n\n⚑ **Moderate severity detected ({result['severity_score']:.1f}/10). Consider scheduling a medical appointment.**"
if result['symptoms_detected']:
response_content += f"\n\nπŸ” **Detected symptoms:** {', '.join(result['symptoms_detected'])}"
response_content += f"\n\nπŸ€– **Confidence Score:** {result['confidence']:.2f} | **Agents Consulted:** {', '.join(result['agents_consulted'])}"
st.session_state.chat_messages.append({"role": "assistant", "content": response_content})
st.rerun()
# Sidebar with additional features
with st.sidebar:
st.markdown("### πŸ› οΈ System Controls")
if st.button("πŸ”„ Reset System"):
st.session_state.medical_system = MedicalConsultationSystem()
st.session_state.chat_messages = []
st.rerun()
st.markdown("### πŸ“ˆ Learning Analytics")
if st.button("πŸ“Š View Detailed Analytics"):
st.session_state.show_analytics = True
if st.button("πŸ’Ύ Export Chat History"):
if st.session_state.chat_messages:
chat_data = {
'timestamp': datetime.now().isoformat(),
'messages': st.session_state.chat_messages,
'system_metrics': medical_system.get_system_metrics()
}
st.download_button(
label="Download Chat Data",
data=json.dumps(chat_data, indent=2),
file_name=f"medical_chat_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
else:
st.warning("No chat history to export")
st.markdown("### 🎯 Quick Health Topics")
quick_topics = [
"Common cold symptoms",
"Headache causes",
"Stress management",
"Sleep problems",
"Healthy diet tips",
"Exercise recommendations"
]
for topic in quick_topics:
if st.button(f"πŸ’‘ {topic}", key=f"topic_{topic.replace(' ', '_')}"):
st.session_state.chat_messages.append({"role": "user", "content": f"Tell me about {topic.lower()}"})
with st.spinner("🧠 Processing..."):
result = medical_system.process_medical_query(f"Tell me about {topic.lower()}")
response_content = result['response']
if result['symptoms_detected']:
response_content += f"\n\nπŸ” **Related symptoms:** {', '.join(result['symptoms_detected'])}"
response_content += f"\n\nπŸ€– **Confidence:** {result['confidence']:.2f}"
st.session_state.chat_messages.append({"role": "assistant", "content": response_content})
st.rerun()
# Analytics Dashboard (if requested)
if st.session_state.get('show_analytics', False):
st.markdown("---")
st.markdown("## πŸ“Š Detailed System Analytics")
metrics = medical_system.get_system_metrics()
if "agent_performance" in metrics:
# Agent Performance Comparison
st.markdown("### πŸ€– Agent Performance Analysis")
agent_data = []
for agent_name, performance in metrics["agent_performance"].items():
agent_data.append({
'Agent': performance['specialization'],
'Success Rate (%)': performance['success_rate'],
'User Satisfaction': performance['user_satisfaction'],
'Learning Rate': performance['learning_rate'],
'Total Queries': performance['total_queries']
})
if agent_data:
df_agents = pd.DataFrame(agent_data)
st.dataframe(df_agents, use_container_width=True)
# Performance charts
col1, col2 = st.columns(2)
with col1:
st.markdown("#### Success Rate by Agent")
if not df_agents.empty:
st.bar_chart(df_agents.set_index('Agent')['Success Rate (%)'])
with col2:
st.markdown("#### User Satisfaction by Agent")
if not df_agents.empty:
st.bar_chart(df_agents.set_index('Agent')['User Satisfaction'])
# Conversation Analysis
st.markdown("### πŸ’¬ Conversation Analysis")
if medical_system.conversation_data:
conversation_df = pd.DataFrame([asdict(entry) for entry in medical_system.conversation_data])
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Conversations", len(conversation_df))
avg_confidence = conversation_df['confidence_score'].mean()
st.metric("Average Confidence", f"{avg_confidence:.2f}")
with col2:
avg_severity = conversation_df['severity_score'].mean()
st.metric("Average Severity", f"{avg_severity:.1f}/10")
feedback_data = conversation_df[conversation_df['user_feedback'].notna()]
if not feedback_data.empty:
avg_feedback = feedback_data['user_feedback'].mean()
st.metric("Average User Rating", f"{avg_feedback:.1f}/5")
with col3:
symptoms_detected = sum(len(symptoms) for symptoms in conversation_df['symptoms'])
st.metric("Total Symptoms Detected", symptoms_detected)
helpful_responses = conversation_df['was_helpful'].sum() if 'was_helpful' in conversation_df else 0
st.metric("Helpful Responses", helpful_responses)
# Severity distribution
st.markdown("#### Severity Score Distribution")
severity_counts = conversation_df['severity_score'].value_counts().sort_index()
st.bar_chart(severity_counts)
# Most common symptoms
st.markdown("#### Most Common Symptoms")
all_symptoms = []
for symptoms_list in conversation_df['symptoms']:
all_symptoms.extend(symptoms_list)
if all_symptoms:
symptom_counts = pd.Series(all_symptoms).value_counts().head(10)
st.bar_chart(symptom_counts)
else:
st.info("No symptoms data available yet")
# Timeline analysis
st.markdown("#### Usage Timeline")
conversation_df['timestamp'] = pd.to_datetime(conversation_df['timestamp'])
daily_usage = conversation_df.groupby(conversation_df['timestamp'].dt.date).size()
st.line_chart(daily_usage)
else:
st.info("No conversation data available for analysis yet")
# Learning Progress
st.markdown("### 🧠 AI Learning Progress")
for agent_name, agent in medical_system.agents.items():
with st.expander(f"πŸ“– {agent.specialization} Learning Details"):
expertise = agent.get_expertise_summary()
st.write(f"**Total Experience:** {expertise['total_queries']} queries processed")
st.write(f"**Current Learning Rate:** {expertise['learning_rate']:.4f}")
st.write(f"**Performance Trend:** {'Improving' if expertise['user_satisfaction'] > 3.5 else 'Learning'}")
if expertise['top_expertise_areas']:
st.write("**Top Expertise Areas:**")
for area, score in expertise['top_expertise_areas'].items():
st.write(f" β€’ {area.title()}: {score:.2f}")
# Learning memory (last few interactions)
if hasattr(agent, 'learning_memory') and agent.learning_memory:
st.write("**Recent Learning Events:**")
for memory in agent.learning_memory[-3:]:
reward_emoji = "βœ…" if memory['reward'] > 0 else "❌" if memory['reward'] < 0 else "➑️"
st.write(f" {reward_emoji} Reward: {memory['reward']:.2f} | Query: {memory['query'][:50]}...")
if st.button("πŸ”„ Close Analytics"):
st.session_state.show_analytics = False
st.rerun()
# Health Tips Section
st.markdown("---")
st.markdown("### 🌟 Daily Health Tips")
health_tips = [
"πŸ’§ Stay hydrated: Aim for 8-10 glasses of water daily",
"🚢 Take regular walks: Even 10 minutes can boost your mood",
"😴 Maintain sleep hygiene: 7-9 hours of quality sleep is essential",
"πŸ₯— Eat colorful foods: Variety ensures you get different nutrients",
"🧘 Practice mindfulness: Just 5 minutes of meditation can reduce stress",
"πŸ“± Take breaks from screens: Follow the 20-20-20 rule",
"🀝 Stay connected: Social connections are vital for mental health",
"β˜€οΈ Get sunlight: 15 minutes of sunlight helps with Vitamin D"
]
# Display a random tip
import random
daily_tip = random.choice(health_tips)
st.info(f"**πŸ’‘ Today's Health Tip:** {daily_tip}")
# Emergency Resources Section
st.markdown("### 🚨 Emergency Resources")
emergency_col1, emergency_col2 = st.columns(2)
with emergency_col1:
st.markdown("""
**πŸ†˜ When to Seek Immediate Help:**
- Chest pain or difficulty breathing
- Severe allergic reactions
- Loss of consciousness
- Severe bleeding
- Signs of stroke (FAST test)
- Severe burns
""")
with emergency_col2:
st.markdown("""
**πŸ“ž Emergency Contacts:**
- Emergency Services: 911 (US), 112 (EU)
- Poison Control: 1-800-222-1222 (US)
- Mental Health Crisis: 988 (US)
- Text HOME to 741741 (Crisis Text Line)
**πŸ₯ Find Nearest Hospital:**
Use your maps app or call emergency services
""")
# Data Persistence and Learning Enhancement
class DataPersistence:
"""Handle data persistence for learning and analytics"""
def __init__(self, data_dir: str = "medical_ai_data"):
self.data_dir = data_dir
os.makedirs(data_dir, exist_ok=True)
def save_conversation_data(self, system: MedicalConsultationSystem):
"""Save conversation data for future learning"""
try:
data_file = os.path.join(self.data_dir, f"conversations_{datetime.now().strftime('%Y%m%d')}.json")
conversations = []
for entry in system.conversation_data:
conversations.append(asdict(entry))
with open(data_file, 'w') as f:
json.dump(conversations, f, indent=2)
return True
except Exception as e:
st.error(f"Failed to save data: {str(e)}")
return False
def save_agent_knowledge(self, system: MedicalConsultationSystem):
"""Save agent learning data"""
try:
for agent_name, agent in system.agents.items():
agent_file = os.path.join(self.data_dir, f"agent_{agent_name}_knowledge.pkl")
agent_data = {
'knowledge_base': dict(agent.knowledge_base),
'performance': asdict(agent.performance),
'learning_memory': agent.learning_memory[-100:] # Keep last 100 entries
}
with open(agent_file, 'wb') as f:
pickle.dump(agent_data, f)
return True
except Exception as e:
st.error(f"Failed to save agent knowledge: {str(e)}")
return False
def load_agent_knowledge(self, system: MedicalConsultationSystem):
"""Load previously saved agent knowledge"""
try:
for agent_name, agent in system.agents.items():
agent_file = os.path.join(self.data_dir, f"agent_{agent_name}_knowledge.pkl")
if os.path.exists(agent_file):
with open(agent_file, 'rb') as f:
agent_data = pickle.load(f)
# Restore knowledge base
agent.knowledge_base = defaultdict(float, agent_data.get('knowledge_base', {}))
# Restore learning memory
agent.learning_memory = agent_data.get('learning_memory', [])
# Restore performance metrics
if 'performance' in agent_data:
perf_data = agent_data['performance']
agent.performance.total_queries = perf_data.get('total_queries', 0)
agent.performance.successful_responses = perf_data.get('successful_responses', 0)
agent.performance.average_confidence = perf_data.get('average_confidence', 0.0)
agent.performance.user_satisfaction = perf_data.get('user_satisfaction', 0.0)
agent.performance.learning_rate = perf_data.get('learning_rate', 0.01)
return True
except Exception as e:
st.error(f"Failed to load agent knowledge: {str(e)}")
return False
# Initialize data persistence
if 'data_persistence' not in st.session_state:
st.session_state.data_persistence = DataPersistence()
# Load previous learning data when system starts
if 'knowledge_loaded' not in st.session_state:
st.session_state.data_persistence.load_agent_knowledge(medical_system)
st.session_state.knowledge_loaded = True
# Auto-save functionality
if len(st.session_state.chat_messages) > 0 and len(st.session_state.chat_messages) % 10 == 0:
# Save data every 10 messages
st.session_state.data_persistence.save_conversation_data(medical_system)
st.session_state.data_persistence.save_agent_knowledge(medical_system)
# Footer with system information
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 2rem; opacity: 0.8;">
<p><strong>MedAssist v1.0</strong> | AI-Powered Medical Preconsultation System</p>
<p>πŸ€– Evolutionary Learning Agents β€’ πŸ” Real-time Medical Search β€’ πŸ’¬ Intelligent Chat Interface</p>
<p><small>⚠️ This system is for informational purposes only and is not a substitute for professional medical advice</small></p>
</div>
""", unsafe_allow_html=True)