# Importing the requirements import warnings warnings.filterwarnings("ignore") import os import base64 import subprocess from io import BytesIO from tqdm import tqdm from pdf2image import convert_from_path import torch from torch.utils.data import DataLoader from transformers.utils.import_utils import is_flash_attn_2_available from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor from openai import OpenAI import spaces import gradio as gr # Enable flash attention # subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Load the visual document retrieval model model = ColQwen2_5.from_pretrained( "vidore/colqwen2.5-v0.2", torch_dtype=torch.bfloat16, device_map="cuda:0", attn_implementation="flash_attention_2" if is_flash_attn_2_available() else None, ).eval() processor = ColQwen2_5_Processor.from_pretrained("vidore/colqwen2.5-v0.2") ################################################ # Helper functions ################################################ def encode_image_to_base64(image): """Encodes a PIL image to a base64 string.""" buffered = BytesIO() image.save(buffered, format="JPEG") return base64.b64encode(buffered.getvalue()).decode("utf-8") def convert_files(files): """Converts a list of PDF files to a list of images.""" images = [] for f in files: images.extend(convert_from_path(f, thread_count=4)) # Check if the number of images is greater than 150 if len(images) >= 150: raise gr.Error("The number of images in the dataset should be less than 150.") return images ################################################ # Model Inference with ColPali and Gemini ################################################ @spaces.GPU def index_gpu(images, ds): """Runs inference on the GPU for the given images with the visual document retrieval model.""" # Specify the device device = "cuda:0" if torch.cuda.is_available() else "cpu" if device != model.device: model.to(device) # Create a DataLoader for the images dataloader = DataLoader( images, batch_size=4, # num_workers=4, shuffle=False, collate_fn=lambda x: processor.process_images(x).to(model.device), ) # Store the document embeddings for batch_doc in tqdm(dataloader): with torch.no_grad(): batch_doc = {k: v.to(device) for k, v in batch_doc.items()} embeddings_doc = model(**batch_doc) ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) return f"Uploaded and converted {len(images)} pages", ds, images def query_gemini(query, images, api_key): """Calls Google's Gemini model with the query and image data.""" if api_key: try: # Convert images to base64 strings base64_images = [encode_image_to_base64(image[0]) for image in images] # Initialize the OpenAI client with the Gemini API key client = OpenAI( api_key=api_key.strip(), base_url="https://generativelanguage.googleapis.com/v1beta/openai/", ) PROMPT = """ You are a smart assistant designed to answer questions about a PDF document. You are given relevant information in the form of PDF pages. Use them to construct a short response to the question, and cite your sources (page numbers, etc). If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents. Give detailed and extensive answers, only containing info in the pages you are given. You can answer using information contained in plots and figures if necessary. Answer in the same language as the query. Query: {query} PDF pages: """ # Get the response from the Gemini API response = client.chat.completions.create( model="gemini-2.5-flash-preview-04-17", reasoning_effort="none", messages=[ { "role": "user", "content": [ {"type": "text", "text": PROMPT.format(query=query)} ] + [ { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{im}"}, } for im in base64_images ], } ], max_tokens=500, ) # Return the content of the response return response.choices[0].message.content # Handle errors from the API except Exception as e: return "API connection error! Please check your API key and try again." # If no API key is provided, return a message indicating that the user should enter their key return "Enter your Gemini API key to get a custom response." ################################################ # Document Indexing and Search ################################################ def index(files, ds): """Convert files to images and index them.""" images = convert_files(files) return index_gpu(images, ds) @spaces.GPU def search(query: str, ds, images, k, api_key): """Search for the most relevant pages based on the query.""" k = min(k, len(ds)) # Specify the device device = "cuda:0" if torch.cuda.is_available() else "cpu" if device != model.device: model.to(device) # Store the query embeddings qs = [] with torch.no_grad(): batch_query = processor.process_queries([query]).to(model.device) embeddings_query = model(**batch_query) qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) # Compute scores scores = processor.score(qs, ds, device=device) top_k_indices = scores[0].topk(k).indices.tolist() # Get the top k images results = [] for idx in top_k_indices: img = images[idx] img_copy = img.copy() results.append((img_copy, f"Page {idx}")) # Generate response from Gemini ai_response = query_gemini(query, results, api_key) return results, ai_response ################################################ # Gradio UI ################################################ with gr.Blocks(theme=gr.themes.Ocean()) as demo: gr.Markdown( "# Multimodal RAG with ColPali & Gemini 📚" ) gr.Markdown( """Demo to test ColQwen2.5 (ColPali) on PDF documents. ColPali is a model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449). This demo allows you to upload PDF files and search for the most relevant pages based on your query. Refresh the page if you change documents! ⚠️ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing English text. Performance is expected to drop for other page formats and languages. Other models will be released with better robustness towards different languages and document formats! """ ) with gr.Row(): with gr.Column(scale=2): gr.Markdown("## 1️⃣ Upload PDFs") file = gr.File( file_types=[".pdf"], file_count="multiple", label="Upload PDFs" ) gr.Markdown("## 2️⃣ Index the PDFs") message = gr.Textbox("Files not yet uploaded", label="Status") convert_button = gr.Button("🔄 Index documents") embeds = gr.State(value=[]) imgs = gr.State(value=[]) with gr.Column(scale=3): gr.Markdown("## 3️⃣ Search") api_key = gr.Textbox( placeholder="Enter your Gemini API key here (must be valid)", label="API key", ) query = gr.Textbox(placeholder="Enter your query here", label="Query") k = gr.Slider( minimum=1, maximum=10, step=1, label="Number of results", value=3, info="Number of pages to retrieve", ) search_button = gr.Button("🔍 Search", variant="primary") # Define the output components gr.Markdown("## 4️⃣ Retrieved Image") output_gallery = gr.Gallery( label="Retrieved Documents", height=600, show_label=True ) gr.Markdown("## 5️⃣ Gemini Response") output_text = gr.Textbox( label="AI Response", placeholder="Generated response based on retrieved documents", show_copy_button=True, ) # Define the button actions convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) search_button.click( search, inputs=[query, embeds, imgs, k, api_key], outputs=[output_gallery, output_text], ) # Launch the gradio app if __name__ == "__main__": demo.queue(max_size=10).launch()