import os import tensorflow as tf import tensorflow_datasets from transformers import ( BertConfig, BertForSequenceClassification, BertTokenizer, TFBertForSequenceClassification, glue_convert_examples_to_features, glue_processors, ) # script parameters BATCH_SIZE = 32 EVAL_BATCH_SIZE = BATCH_SIZE * 2 USE_XLA = False USE_AMP = False EPOCHS = 3 TASK = "mrpc" if TASK == "sst-2": TFDS_TASK = "sst2" elif TASK == "sts-b": TFDS_TASK = "stsb" else: TFDS_TASK = TASK num_labels = len(glue_processors[TASK]().get_labels()) print(num_labels) tf.config.optimizer.set_jit(USE_XLA) tf.config.optimizer.set_experimental_options({"auto_mixed_precision": USE_AMP}) # Load tokenizer and model from pretrained model/vocabulary. Specify the number of labels to classify (2+: classification, 1: regression) config = BertConfig.from_pretrained("bert-base-cased", num_labels=num_labels) tokenizer = BertTokenizer.from_pretrained("bert-base-cased") model = TFBertForSequenceClassification.from_pretrained("bert-base-cased", config=config) # Load dataset via TensorFlow Datasets data, info = tensorflow_datasets.load(f"glue/{TFDS_TASK}", with_info=True) train_examples = info.splits["train"].num_examples # MNLI expects either validation_matched or validation_mismatched valid_examples = info.splits["validation"].num_examples # Prepare dataset for GLUE as a tf.data.Dataset instance train_dataset = glue_convert_examples_to_features(data["train"], tokenizer, 128, TASK) # MNLI expects either validation_matched or validation_mismatched valid_dataset = glue_convert_examples_to_features(data["validation"], tokenizer, 128, TASK) train_dataset = train_dataset.shuffle(128).batch(BATCH_SIZE).repeat(-1) valid_dataset = valid_dataset.batch(EVAL_BATCH_SIZE) # Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule opt = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08) if USE_AMP: # loss scaling is currently required when using mixed precision opt = tf.keras.mixed_precision.experimental.LossScaleOptimizer(opt, "dynamic") if num_labels == 1: loss = tf.keras.losses.MeanSquaredError() else: loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") model.compile(optimizer=opt, loss=loss, metrics=[metric]) # Train and evaluate using tf.keras.Model.fit() train_steps = train_examples // BATCH_SIZE valid_steps = valid_examples // EVAL_BATCH_SIZE history = model.fit( train_dataset, epochs=EPOCHS, steps_per_epoch=train_steps, validation_data=valid_dataset, validation_steps=valid_steps, ) # Save TF2 model os.makedirs("./save/", exist_ok=True) model.save_pretrained("./save/") if TASK == "mrpc": # Load the TensorFlow model in PyTorch for inspection # This is to demo the interoperability between the two frameworks, you don't have to # do this in real life (you can run the inference on the TF model). pytorch_model = BertForSequenceClassification.from_pretrained("./save/", from_tf=True) # Quickly test a few predictions - MRPC is a paraphrasing task, let's see if our model learned the task sentence_0 = "This research was consistent with his findings." sentence_1 = "His findings were compatible with this research." sentence_2 = "His findings were not compatible with this research." inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors="pt") inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors="pt") pred_1 = pytorch_model(**inputs_1)[0].argmax().item() pred_2 = pytorch_model(**inputs_2)[0].argmax().item() print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0") print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")