Spaces:
Runtime error
Runtime error
Add application file
Browse files- app.py +136 -0
- configs/_base_/faster-rcnn_r50_fpn_1x_coco.py +114 -0
- configs/faster-rcnn_r50_fpn_organoid_orgaquant.py +83 -0
- images/Subset_1_450x450_001.jpg +0 -0
- images/Subset_1_450x450_002.jpg +0 -0
- images/Subset_1_450x450_003.jpg +0 -0
- images/Subset_1_450x450_004.jpg +0 -0
- images/Subset_1_450x450_005.jpg +0 -0
- images/Subset_1_450x450_006.jpg +0 -0
- images/Subset_1_450x450_007.jpg +0 -0
- images/Subset_1_450x450_008.jpg +0 -0
- images/Subset_1_450x450_009.jpg +0 -0
- images/Subset_1_450x450_010.jpg +0 -0
- model.py +74 -0
- models/orgaquant_pretrained.pth +3 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
import pathlib
|
7 |
+
import subprocess
|
8 |
+
import tarfile
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
import gradio as gr
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from model import AppModel
|
15 |
+
|
16 |
+
DESCRIPTION = '''# MMDetection
|
17 |
+
This is an unofficial demo for [https://github.com/open-mmlab/mmdetection](https://github.com/open-mmlab/mmdetection).
|
18 |
+
<img id="overview" alt="overview" src="https://user-images.githubusercontent.com/12907710/137271636-56ba1cd2-b110-4812-8221-b4c120320aa9.png" />
|
19 |
+
'''
|
20 |
+
|
21 |
+
DEFAULT_MODEL_TYPE = 'detection'
|
22 |
+
DEFAULT_MODEL_NAMES = {
|
23 |
+
'detection': 'YOLOX-l',
|
24 |
+
'instance_segmentation': 'QueryInst (R-50-FPN)',
|
25 |
+
'panoptic_segmentation': 'MaskFormer (R-50)',
|
26 |
+
}
|
27 |
+
DEFAULT_MODEL_NAME = DEFAULT_MODEL_NAMES[DEFAULT_MODEL_TYPE]
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def update_input_image(image: np.ndarray) -> dict:
|
32 |
+
if image is None:
|
33 |
+
return gr.Image.update(value=None)
|
34 |
+
scale = 1500 / max(image.shape[:2])
|
35 |
+
if scale < 1:
|
36 |
+
image = cv2.resize(image, None, fx=scale, fy=scale)
|
37 |
+
return gr.Image.update(value=image)
|
38 |
+
|
39 |
+
|
40 |
+
def update_model_name(model_type: str) -> dict:
|
41 |
+
model_dict = getattr(AppModel, f'{model_type.upper()}_MODEL_DICT')
|
42 |
+
model_names = list(model_dict.keys())
|
43 |
+
model_name = DEFAULT_MODEL_NAMES[model_type]
|
44 |
+
return gr.Dropdown.update(choices=model_names, value=model_name)
|
45 |
+
|
46 |
+
|
47 |
+
def update_visualization_score_threshold(model_type: str) -> dict:
|
48 |
+
return gr.Slider.update(visible=model_type != 'panoptic_segmentation')
|
49 |
+
|
50 |
+
|
51 |
+
def update_redraw_button(model_type: str) -> dict:
|
52 |
+
return gr.Button.update(visible=model_type != 'panoptic_segmentation')
|
53 |
+
|
54 |
+
|
55 |
+
def set_example_image(example: list) -> dict:
|
56 |
+
return gr.Image.update(value=example[0])
|
57 |
+
|
58 |
+
|
59 |
+
model = AppModel(DEFAULT_MODEL_NAME)
|
60 |
+
|
61 |
+
with gr.Blocks(css='style.css') as demo:
|
62 |
+
gr.Markdown(DESCRIPTION)
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Column():
|
66 |
+
with gr.Row():
|
67 |
+
input_image = gr.Image(label='Input Image', type='numpy')
|
68 |
+
with gr.Group():
|
69 |
+
with gr.Row():
|
70 |
+
model_type = gr.Radio(list(DEFAULT_MODEL_NAMES.keys()),
|
71 |
+
value=DEFAULT_MODEL_TYPE,
|
72 |
+
label='Model Type')
|
73 |
+
with gr.Row():
|
74 |
+
model_name = gr.Dropdown(list(
|
75 |
+
model.DETECTION_MODEL_DICT.keys()),
|
76 |
+
value=DEFAULT_MODEL_NAME,
|
77 |
+
label='Model')
|
78 |
+
with gr.Row():
|
79 |
+
run_button = gr.Button(value='Run')
|
80 |
+
prediction_results = gr.Variable()
|
81 |
+
with gr.Column():
|
82 |
+
with gr.Row():
|
83 |
+
visualization = gr.Image(label='Result', type='numpy')
|
84 |
+
with gr.Row():
|
85 |
+
visualization_score_threshold = gr.Slider(
|
86 |
+
0,
|
87 |
+
1,
|
88 |
+
step=0.05,
|
89 |
+
value=0.3,
|
90 |
+
label='Visualization Score Threshold')
|
91 |
+
with gr.Row():
|
92 |
+
redraw_button = gr.Button(value='Redraw')
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
|
96 |
+
example_images = gr.Dataset(components=[input_image],
|
97 |
+
samples=[[path.as_posix()]
|
98 |
+
for path in paths])
|
99 |
+
|
100 |
+
input_image.change(fn=update_input_image,
|
101 |
+
inputs=input_image,
|
102 |
+
outputs=input_image)
|
103 |
+
|
104 |
+
model_type.change(fn=update_model_name,
|
105 |
+
inputs=model_type,
|
106 |
+
outputs=model_name)
|
107 |
+
model_type.change(fn=update_visualization_score_threshold,
|
108 |
+
inputs=model_type,
|
109 |
+
outputs=visualization_score_threshold)
|
110 |
+
model_type.change(fn=update_redraw_button,
|
111 |
+
inputs=model_type,
|
112 |
+
outputs=redraw_button)
|
113 |
+
|
114 |
+
model_name.change(fn=model.set_model, inputs=model_name, outputs=None)
|
115 |
+
run_button.click(fn=model.run,
|
116 |
+
inputs=[
|
117 |
+
model_name,
|
118 |
+
input_image,
|
119 |
+
visualization_score_threshold,
|
120 |
+
],
|
121 |
+
outputs=[
|
122 |
+
prediction_results,
|
123 |
+
visualization,
|
124 |
+
])
|
125 |
+
redraw_button.click(fn=model.visualize_detection_results,
|
126 |
+
inputs=[
|
127 |
+
input_image,
|
128 |
+
prediction_results,
|
129 |
+
visualization_score_threshold,
|
130 |
+
],
|
131 |
+
outputs=visualization)
|
132 |
+
example_images.click(fn=set_example_image,
|
133 |
+
inputs=example_images,
|
134 |
+
outputs=input_image)
|
135 |
+
|
136 |
+
demo.queue().launch(show_api=False)
|
configs/_base_/faster-rcnn_r50_fpn_1x_coco.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='FasterRCNN',
|
4 |
+
data_preprocessor=dict(
|
5 |
+
type='DetDataPreprocessor',
|
6 |
+
mean=[123.675, 116.28, 103.53],
|
7 |
+
std=[58.395, 57.12, 57.375],
|
8 |
+
bgr_to_rgb=True,
|
9 |
+
pad_size_divisor=32),
|
10 |
+
backbone=dict(
|
11 |
+
type='ResNet',
|
12 |
+
depth=50,
|
13 |
+
num_stages=4,
|
14 |
+
out_indices=(0, 1, 2, 3),
|
15 |
+
frozen_stages=1,
|
16 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
17 |
+
norm_eval=True,
|
18 |
+
style='pytorch',
|
19 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
20 |
+
neck=dict(
|
21 |
+
type='FPN',
|
22 |
+
in_channels=[256, 512, 1024, 2048],
|
23 |
+
out_channels=256,
|
24 |
+
num_outs=5),
|
25 |
+
rpn_head=dict(
|
26 |
+
type='RPNHead',
|
27 |
+
in_channels=256,
|
28 |
+
feat_channels=256,
|
29 |
+
anchor_generator=dict(
|
30 |
+
type='AnchorGenerator',
|
31 |
+
scales=[8],
|
32 |
+
ratios=[0.5, 1.0, 2.0],
|
33 |
+
strides=[4, 8, 16, 32, 64]),
|
34 |
+
bbox_coder=dict(
|
35 |
+
type='DeltaXYWHBBoxCoder',
|
36 |
+
target_means=[.0, .0, .0, .0],
|
37 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
38 |
+
loss_cls=dict(
|
39 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
40 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
41 |
+
roi_head=dict(
|
42 |
+
type='StandardRoIHead',
|
43 |
+
bbox_roi_extractor=dict(
|
44 |
+
type='SingleRoIExtractor',
|
45 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
46 |
+
out_channels=256,
|
47 |
+
featmap_strides=[4, 8, 16, 32]),
|
48 |
+
bbox_head=dict(
|
49 |
+
type='Shared2FCBBoxHead',
|
50 |
+
in_channels=256,
|
51 |
+
fc_out_channels=1024,
|
52 |
+
roi_feat_size=7,
|
53 |
+
num_classes=80,
|
54 |
+
bbox_coder=dict(
|
55 |
+
type='DeltaXYWHBBoxCoder',
|
56 |
+
target_means=[0., 0., 0., 0.],
|
57 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
58 |
+
reg_class_agnostic=False,
|
59 |
+
loss_cls=dict(
|
60 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
61 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
62 |
+
# model training and testing settings
|
63 |
+
train_cfg=dict(
|
64 |
+
rpn=dict(
|
65 |
+
assigner=dict(
|
66 |
+
type='MaxIoUAssigner',
|
67 |
+
pos_iou_thr=0.7,
|
68 |
+
neg_iou_thr=0.3,
|
69 |
+
min_pos_iou=0.3,
|
70 |
+
match_low_quality=True,
|
71 |
+
ignore_iof_thr=-1),
|
72 |
+
sampler=dict(
|
73 |
+
type='RandomSampler',
|
74 |
+
num=256,
|
75 |
+
pos_fraction=0.5,
|
76 |
+
neg_pos_ub=-1,
|
77 |
+
add_gt_as_proposals=False),
|
78 |
+
allowed_border=-1,
|
79 |
+
pos_weight=-1,
|
80 |
+
debug=False),
|
81 |
+
rpn_proposal=dict(
|
82 |
+
nms_pre=2000,
|
83 |
+
max_per_img=1000,
|
84 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
85 |
+
min_bbox_size=0),
|
86 |
+
rcnn=dict(
|
87 |
+
assigner=dict(
|
88 |
+
type='MaxIoUAssigner',
|
89 |
+
pos_iou_thr=0.5,
|
90 |
+
neg_iou_thr=0.5,
|
91 |
+
min_pos_iou=0.5,
|
92 |
+
match_low_quality=False,
|
93 |
+
ignore_iof_thr=-1),
|
94 |
+
sampler=dict(
|
95 |
+
type='RandomSampler',
|
96 |
+
num=512,
|
97 |
+
pos_fraction=0.25,
|
98 |
+
neg_pos_ub=-1,
|
99 |
+
add_gt_as_proposals=True),
|
100 |
+
pos_weight=-1,
|
101 |
+
debug=False)),
|
102 |
+
test_cfg=dict(
|
103 |
+
rpn=dict(
|
104 |
+
nms_pre=1000,
|
105 |
+
max_per_img=1000,
|
106 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
107 |
+
min_bbox_size=0),
|
108 |
+
rcnn=dict(
|
109 |
+
score_thr=0.05,
|
110 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
111 |
+
max_per_img=100)
|
112 |
+
# soft-nms is also supported for rcnn testing
|
113 |
+
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
114 |
+
))
|
configs/faster-rcnn_r50_fpn_organoid_orgaquant.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Inherit and overwrite part of the config based on this config
|
3 |
+
_base_ = './faster-rcnn_r50_fpn_1x_coco.py'
|
4 |
+
|
5 |
+
data_root = 'data/' # dataset root
|
6 |
+
|
7 |
+
train_batch_size_per_gpu = 16
|
8 |
+
train_num_workers = 1
|
9 |
+
|
10 |
+
max_epochs = 105
|
11 |
+
base_lr = 0.00001
|
12 |
+
|
13 |
+
|
14 |
+
metainfo = {
|
15 |
+
'classes': ('orgaquant', ),
|
16 |
+
'palette': [
|
17 |
+
(220, 20, 60),
|
18 |
+
]
|
19 |
+
}
|
20 |
+
|
21 |
+
train_dataloader = dict(
|
22 |
+
batch_size=train_batch_size_per_gpu,
|
23 |
+
num_workers=train_num_workers,
|
24 |
+
dataset=dict(
|
25 |
+
data_root=data_root,
|
26 |
+
metainfo=metainfo,
|
27 |
+
data_prefix=dict(img='train/'),
|
28 |
+
ann_file='train.json'))
|
29 |
+
|
30 |
+
val_dataloader = dict(
|
31 |
+
dataset=dict(
|
32 |
+
data_root=data_root,
|
33 |
+
metainfo=metainfo,
|
34 |
+
data_prefix=dict(img='val/'),
|
35 |
+
ann_file='val.json'))
|
36 |
+
|
37 |
+
test_dataloader = val_dataloader
|
38 |
+
|
39 |
+
val_evaluator = dict(ann_file=data_root + 'val.json')
|
40 |
+
|
41 |
+
test_evaluator = val_evaluator
|
42 |
+
|
43 |
+
model = dict(
|
44 |
+
roi_head=dict(
|
45 |
+
bbox_head=dict(num_classes=1)))
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
train_pipeline = [
|
50 |
+
dict(type='LoadImageFromFile', backend_args=None),
|
51 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
52 |
+
dict(type='RandomFlip', prob=0.5),
|
53 |
+
dict(type = 'RandomShift', prob = 0.5),
|
54 |
+
dict(type = 'RandomAffine'),
|
55 |
+
dict(type='PhotoMetricDistortion'),
|
56 |
+
dict(type='PackDetInputs')
|
57 |
+
]
|
58 |
+
|
59 |
+
|
60 |
+
# optimizer
|
61 |
+
optim_wrapper = dict(
|
62 |
+
_delete_=True,
|
63 |
+
type='OptimWrapper',
|
64 |
+
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
|
65 |
+
paramwise_cfg=dict(
|
66 |
+
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
67 |
+
|
68 |
+
default_hooks = dict(
|
69 |
+
checkpoint=dict(
|
70 |
+
interval=5,
|
71 |
+
max_keep_ckpts=2, # only keep latest 2 checkpoints
|
72 |
+
save_best='auto'
|
73 |
+
),
|
74 |
+
logger=dict(type='LoggerHook', interval=5))
|
75 |
+
|
76 |
+
|
77 |
+
# load COCO pre-trained weight
|
78 |
+
|
79 |
+
# load_from = './work_dirs/faster-rcnn_r50_fpn_organoid/best_coco_bbox_mAP_epoch_12.pth'
|
80 |
+
|
81 |
+
|
82 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
|
83 |
+
visualizer = dict(vis_backends=[dict(type='LocalVisBackend'),dict(type='TensorboardVisBackend')])
|
images/Subset_1_450x450_001.jpg
ADDED
images/Subset_1_450x450_002.jpg
ADDED
images/Subset_1_450x450_003.jpg
ADDED
images/Subset_1_450x450_004.jpg
ADDED
images/Subset_1_450x450_005.jpg
ADDED
images/Subset_1_450x450_006.jpg
ADDED
images/Subset_1_450x450_007.jpg
ADDED
images/Subset_1_450x450_008.jpg
ADDED
images/Subset_1_450x450_009.jpg
ADDED
images/Subset_1_450x450_010.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
|
5 |
+
import huggingface_hub
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import yaml # type: ignore
|
10 |
+
from mmdet.apis import inference_detector, init_detector
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
class Model:
|
17 |
+
|
18 |
+
def __init__(self, model_name: str):
|
19 |
+
self.device = torch.device(
|
20 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
21 |
+
self.model_name = model_name
|
22 |
+
self.model = self._load_model(model_name)
|
23 |
+
|
24 |
+
|
25 |
+
def _load_model(self, name: str) -> nn.Module:
|
26 |
+
dic = self.MODEL_DICT[name]
|
27 |
+
return init_detector('configs/_base_/faster-rcnn_r50_fpn_1x_coco.py','models/orgaquanT-pretarined.pth' , device=self.device)
|
28 |
+
|
29 |
+
def set_model(self, name: str) -> None:
|
30 |
+
if name == self.model_name:
|
31 |
+
return
|
32 |
+
self.model_name = name
|
33 |
+
self.model = self._load_model(name)
|
34 |
+
|
35 |
+
def detect_and_visualize(
|
36 |
+
self, image: np.ndarray, score_threshold: float
|
37 |
+
) -> tuple[list[np.ndarray] | tuple[list[np.ndarray],
|
38 |
+
list[list[np.ndarray]]]
|
39 |
+
| dict[str, np.ndarray], np.ndarray]:
|
40 |
+
out = self.detect(image)
|
41 |
+
vis = self.visualize_detection_results(image, out, score_threshold)
|
42 |
+
return out, vis
|
43 |
+
|
44 |
+
def detect(
|
45 |
+
self, image: np.ndarray
|
46 |
+
) -> list[np.ndarray] | tuple[
|
47 |
+
list[np.ndarray], list[list[np.ndarray]]] | dict[str, np.ndarray]:
|
48 |
+
out = inference_detector(self.model, image)
|
49 |
+
return out
|
50 |
+
|
51 |
+
def visualize_detection_results(
|
52 |
+
self,
|
53 |
+
image: np.ndarray,
|
54 |
+
detection_results: list[np.ndarray]
|
55 |
+
| tuple[list[np.ndarray], list[list[np.ndarray]]]
|
56 |
+
| dict[str, np.ndarray],
|
57 |
+
score_threshold: float = 0.3) -> np.ndarray:
|
58 |
+
vis = self.model.show_result(image,
|
59 |
+
detection_results,
|
60 |
+
score_thr=score_threshold,
|
61 |
+
bbox_color=None,
|
62 |
+
text_color=(200, 200, 200),
|
63 |
+
mask_color=None)
|
64 |
+
return vis
|
65 |
+
|
66 |
+
|
67 |
+
class AppModel(Model):
|
68 |
+
def run(
|
69 |
+
self, model_name: str, image: np.ndarray, score_threshold: float
|
70 |
+
) -> tuple[list[np.ndarray] | tuple[list[np.ndarray],
|
71 |
+
list[list[np.ndarray]]]
|
72 |
+
| dict[str, np.ndarray], np.ndarray]:
|
73 |
+
self.set_model(model_name)
|
74 |
+
return self.detect_and_visualize(image, score_threshold)
|
models/orgaquant_pretrained.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94f9c7f8e33727b7838bb72614b7a3af0c66071e8138708463e1fc1eaac928a2
|
3 |
+
size 495354591
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mmcv-full==1.5.2
|
2 |
+
mmdet==2.25.0
|
3 |
+
numpy==1.22.4
|
4 |
+
opencv-python-headless==4.5.5.64
|
5 |
+
openmim==0.1.5
|
6 |
+
torch==1.11.0
|
7 |
+
torchvision==0.12.0
|