import streamlit as st import pandas as pd # import CosineDistanceClustering import PU import bert_embeddings import oneclass # Function to recommend papers def recommend_papers(positive_df, unlabelled_df, model="tfidf"): pass # Streamlit app def main(): st.title("ArXiv Feed Recommendations") # User input for model selection model = st.selectbox("Select Model", ["PU","oneclass"]) # Upload CSV files st.subheader("Upload Positive Labeled CSV") positive_file = st.file_uploader("Upload CSV", type=['csv'], key="positive") st.subheader("Upload Unlabelled Data CSV") unlabelled_file = st.file_uploader("Upload CSV", type=['csv'], key="unlabelled") if positive_file is not None and unlabelled_file is not None: # Read CSV files positive_df = pd.read_csv(positive_file) unlabelled_df = pd.read_csv(unlabelled_file) # Show uploaded data st.subheader("Positive Labeled Data") st.write(positive_df) st.subheader("Unlabelled Data") st.write(unlabelled_df) # Button to trigger recommendation if st.button("Recommend"): # Call recommend_papers function recommended_indices = recommend_papers(positive_df, unlabelled_df, model.lower()) st.write(recommended_indices) # Download CSV st.markdown(get_csv_download_link(recommended_indices), unsafe_allow_html=True) # Function to generate a download link for CSV def get_csv_download_link(data): csv = data.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() href = f'Download CSV' return href if __name__ == "__main__": main()