import torch import gradio as gr from threading import Thread from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer #device = "cuda" # the device to load the model onto device = "cpu" # the device to load the model onto bot_avatar = "shuaikang/dl_logo_rect.png" # 聊天机器人头像位置 user_avatar = "shuaikang/user_avatar.jpg" # 用户头像位置 #model_path = "sethuiyer/Medichat-Llama3-8B" # 已下载的模型位置 model_path = "johnsnowlabs/JSL-MedMX-7X" #model_path = "aaditya/Llama3-OpenBioLLM-8B" # 存储全局的历史对话记录,Llama3支持系统prompt,所以这里默认设置! llama3_chat_history = [ {"role": "system", "content": "You are a helpful assistant trained by MetaAI! But you are running with DataLearnerAI Code."} ] # 初始化所有变量,用于载入模型 tokenizer = None streamer = None model = None terminators = None def init_model(): """初始化模型,载入本地模型 """ global tokenizer, model, streamer, terminators tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map=device, trust_remote_code=True ) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] streamer = TextIteratorStreamer( tokenizer, skip_prompt=True, skip_special_tokens=True ) with gr.Blocks() as demo: # step1: 载入模型 init_model() # step2: 初始化gradio的chatbot应用,并添加按钮等信息 chatbot = gr.Chatbot( height=900, avatar_images=(user_avatar, bot_avatar) ) msg = gr.Textbox() clear = gr.ClearButton([msg, chatbot]) # 清楚历史记录 def clear_history(): global llama3_chat_history llama3_chat_history = [] # 用于回复的方法 def respond(message, chat_history): global llama3_chat_history, tokenizer, model, streamer llama3_chat_history.append({"role": "user", "content": message}) # 使用Llama3自带的聊天模板,格式化对话记录 history_str = tokenizer.apply_chat_template( llama3_chat_history, tokenize=False, add_generation_prompt=True ) # tokenzier inputs = tokenizer(history_str, return_tensors='pt').to(device) chat_history.append([message, ""]) generation_kwargs = dict( **inputs, streamer=streamer, max_new_tokens=4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, eos_token_id=terminators ) # 启动线程,用以监控流失输出结果 thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() for new_text in streamer: chat_history[-1][1] += new_text yield "", chat_history llama3_chat_history.append( {"role": "assistant", "content": chat_history[-1][1]} ) # 点击清楚按钮,触发历史记录清楚 clear.click(clear_history) msg.submit(respond, [msg, chatbot], [msg, chatbot]) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)