shreyasvaidya's picture
Upload folder using huggingface_hub
4c02d9f verified
raw
history blame contribute delete
10.1 kB
import torch
import os
from torch.nn import init
import cv2
import numpy as np
import time
import requests
from IndicPhotoOCR.detection import east_config as cfg
from IndicPhotoOCR.detection import east_preprossing as preprossing
from IndicPhotoOCR.detection import east_locality_aware_nms as locality_aware_nms
# Example usage:
model_info = {
"east": {
"paths": [ cfg.checkpoint, cfg.pretrained_basemodel_path],
"urls" : ["https://github.com/anikde/STocr/releases/download/e0.1.0/epoch_990_checkpoint.pth.tar", "https://github.com/anikde/STocr/releases/download/e0.1.0/mobilenet_v2.pth.tar"]
},
}
class ModelManager:
def __init__(self):
# self.root_model_dir = "bharatOCR/detection/"
pass
def download_model(self, url, path):
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk: # Filter out keep-alive chunks
f.write(chunk)
print(f"Downloaded: {path}")
else:
print(f"Failed to download from {url}")
def ensure_model(self, model_name):
model_paths = model_info[model_name]["paths"] # Changed to handle multiple paths
urls = model_info[model_name]["urls"] # Changed to handle multiple URLs
for model_path, url in zip(model_paths, urls):
# full_model_path = os.path.join(self.root_model_dir, model_path)
# Ensure the model path directory exists
os.makedirs(os.path.dirname(os.path.join(*cfg.pretrained_basemodel_path.split("/"))), exist_ok=True)
if not os.path.exists(model_path):
print(f"Model not found locally. Downloading {model_name} from {url}...")
self.download_model(url, model_path)
else:
print(f"Model already exists at {model_path}. No need to download.")
# # Initialize ModelManager and ensure Hindi models are downloaded
model_manager = ModelManager()
model_manager.ensure_model("east")
def init_weights(m_list, init_type=cfg.init_type, gain=0.02):
print("EAST <==> Prepare <==> Init Network'{}' <==> Begin".format(cfg.init_type))
# this will apply to each layer
for m in m_list:
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') # good for relu
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
print("EAST <==> Prepare <==> Init Network'{}' <==> Done".format(cfg.init_type))
def Loading_checkpoint(model, optimizer, scheduler, filename='checkpoint.pth.tar'):
"""[summary]
[description]
Arguments:
state {[type]} -- [description] a dict describe some params
Keyword Arguments:
filename {str} -- [description] (default: {'checkpoint.pth.tar'})
"""
weightpath = os.path.abspath(cfg.checkpoint)
print("EAST <==> Prepare <==> Loading checkpoint '{}' <==> Begin".format(weightpath))
checkpoint = torch.load(weightpath)
start_epoch = checkpoint['epoch'] + 1
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print("EAST <==> Prepare <==> Loading checkpoint '{}' <==> Done".format(weightpath))
return start_epoch
def save_checkpoint(epoch, model, optimizer, scheduler, filename='checkpoint.pth.tar'):
"""[summary]
[description]
Arguments:
state {[type]} -- [description] a dict describe some params
Keyword Arguments:
filename {str} -- [description] (default: {'checkpoint.pth.tar'})
"""
print('EAST <==> Save weight - epoch {} <==> Begin'.format(epoch))
state = {
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict()
}
weight_dir = cfg.save_model_path
if not os.path.exists(weight_dir):
os.mkdir(weight_dir)
filename = 'epoch_' + str(epoch) + '_checkpoint.pth.tar'
file_path = os.path.join(weight_dir, filename)
torch.save(state, file_path)
print('EAST <==> Save weight - epoch {} <==> Done'.format(epoch))
class Regularization(torch.nn.Module):
def __init__(self, model, weight_decay, p=2):
super(Regularization, self).__init__()
if weight_decay < 0:
print("param weight_decay can not <0")
exit(0)
self.model = model
self.weight_decay = weight_decay
self.p = p
self.weight_list = self.get_weight(model)
# self.weight_info(self.weight_list)
def to(self, device):
self.device = device
super().to(device)
return self
def forward(self, model):
self.weight_list = self.get_weight(model) # 获得最新的权重
reg_loss = self.regularization_loss(self.weight_list, self.weight_decay, p=self.p)
return reg_loss
def get_weight(self, model):
weight_list = []
for name, param in model.named_parameters():
if 'weight' in name:
weight = (name, param)
weight_list.append(weight)
return weight_list
def regularization_loss(self, weight_list, weight_decay, p=2):
reg_loss = 0
for name, w in weight_list:
l2_reg = torch.norm(w, p=p)
reg_loss = reg_loss + l2_reg
reg_loss = weight_decay * reg_loss
return reg_loss
def weight_info(self, weight_list):
print("---------------regularization weight---------------")
for name, w in weight_list:
print(name)
print("---------------------------------------------------")
def resize_image(im, max_side_len=2400):
'''
resize image to a size multiple of 32 which is required by the network
:param im: the resized image
:param max_side_len: limit of max image size to avoid out of memory in gpu
:return: the resized image and the resize ratio
'''
h, w, _ = im.shape
resize_w = w
resize_h = h
# limit the max side
"""
if max(resize_h, resize_w) > max_side_len:
ratio = float(max_side_len) / resize_h if resize_h > resize_w else float(max_side_len) / resize_w
else:
ratio = 1.
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
"""
resize_h = resize_h if resize_h % 32 == 0 else (resize_h // 32 - 1) * 32
resize_w = resize_w if resize_w % 32 == 0 else (resize_w // 32 - 1) * 32
#resize_h, resize_w = 512, 512
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def detect(score_map, geo_map, timer, score_map_thresh=0.8, box_thresh=0.1, nms_thres=0.2):
'''
restore text boxes from score map and geo map
:param score_map:
:param geo_map:
:param timer:
:param score_map_thresh: threshhold for score map
:param box_thresh: threshhold for boxes
:param nms_thres: threshold for nms
:return:
'''
# score_map 和 geo_map 的维数进行调整
if len(score_map.shape) == 4:
score_map = score_map[0, :, :, 0]
geo_map = geo_map[0, :, :, :]
# filter the score map
xy_text = np.argwhere(score_map > score_map_thresh)
# sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 0])]
# restore
start = time.time()
text_box_restored = preprossing.restore_rectangle(xy_text[:, ::-1] * 4,
geo_map[xy_text[:, 0], xy_text[:, 1], :]) # N*4*2
# print('{} text boxes before nms'.format(text_box_restored.shape[0]))
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
timer['restore'] = time.time() - start
# nms part
start = time.time()
boxes = locality_aware_nms.nms_locality(boxes.astype(np.float64), nms_thres)
timer['nms'] = time.time() - start
# print(timer['nms'])
if boxes.shape[0] == 0:
return None, timer
# here we filter some low score boxes by the average score map, this is different from the orginal paper
for i, box in enumerate(boxes):
mask = np.zeros_like(score_map, dtype=np.uint8)
cv2.fillPoly(mask, box[:8].reshape((-1, 4, 2)).astype(np.int32) // 4, 1)
boxes[i, 8] = cv2.mean(score_map, mask)[0]
boxes = boxes[boxes[:, 8] > box_thresh]
return boxes, timer
def sort_poly(p):
min_axis = np.argmin(np.sum(p, axis=1))
p = p[[min_axis, (min_axis + 1) % 4, (min_axis + 2) % 4, (min_axis + 3) % 4]]
if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
return p
else:
return p[[0, 3, 2, 1]]
def mean_image_subtraction(images, means=cfg.means):
'''
image normalization
:param images: bs * w * h * channel
:param means:
:return:
'''
num_channels = images.data.shape[1]
if len(means) != num_channels:
raise ValueError('len(means) must match the number of channels')
for i in range(num_channels):
images.data[:, i, :, :] -= means[i]
return images