Spaces:
Running
Running
fixed path
Browse files- __pycache__/inference.cpython-312.pyc +0 -0
- app.py +1 -1
- inference.py +1 -1
__pycache__/inference.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/inference.cpython-312.pyc and b/__pycache__/inference.cpython-312.pyc differ
|
|
|
app.py
CHANGED
|
@@ -14,7 +14,7 @@ import inference as inf
|
|
| 14 |
def colorize_image(image):
|
| 15 |
# Load the model
|
| 16 |
# file_path = 'ImageColorizationModel10.pth'
|
| 17 |
-
file_path =
|
| 18 |
model_2 = inf.load_model(model_class=MainModel, file_path=file_path)
|
| 19 |
output_img = inf.predict_color(model_2, image=image)
|
| 20 |
return output_img
|
|
|
|
| 14 |
def colorize_image(image):
|
| 15 |
# Load the model
|
| 16 |
# file_path = 'ImageColorizationModel10.pth'
|
| 17 |
+
file_path = './model/model_final.pth'
|
| 18 |
model_2 = inf.load_model(model_class=MainModel, file_path=file_path)
|
| 19 |
output_img = inf.predict_color(model_2, image=image)
|
| 20 |
return output_img
|
inference.py
CHANGED
|
@@ -98,7 +98,7 @@ def load_model(model_class, file_path):
|
|
| 98 |
model.load_state_dict(torch.load(file_path, map_location=device))
|
| 99 |
|
| 100 |
resnet_weights = torch.load(file_path)
|
| 101 |
-
resnet_weights = torch.load(
|
| 102 |
resnet_state_dict = resnet_weights['state_dict'] if 'state_dict' in resnet_weights else resnet_weights
|
| 103 |
|
| 104 |
model_dict = model.state_dict()
|
|
|
|
| 98 |
model.load_state_dict(torch.load(file_path, map_location=device))
|
| 99 |
|
| 100 |
resnet_weights = torch.load(file_path)
|
| 101 |
+
resnet_weights = torch.load("./model/res18-unet.pt")
|
| 102 |
resnet_state_dict = resnet_weights['state_dict'] if 'state_dict' in resnet_weights else resnet_weights
|
| 103 |
|
| 104 |
model_dict = model.state_dict()
|