import gradio as gr import os from ultralytics import YOLO import numpy as np import json from PIL import Image, ImageDraw # Define keypoints we need for rigging KEYPOINTS = { 0: {"name": "chin (nose)"}, 7: {"name": "left_elbow"}, 8: {"name": "right_elbow"}, 9: {"name": "left_wrist"}, 10: {"name": "right_wrist"}, 13: {"name": "left_knee"}, 14: {"name": "right_knee"} } # Initialize model model = None def load_model(): """Load the YOLO pose estimation model""" global model if model is None: model_path = 'yolov8s-pose.pt' if os.path.exists(model_path): try: model = YOLO(model_path) print("Model loaded successfully") except Exception as e: print(f"Error loading model: {e}") model = None else: print(f"Model file not found: {model_path}") return model def process_image(input_image): """ Process an image for pose estimation and return keypoint coordinates Args: input_image: Input image (PIL Image or numpy array) Returns: Tuple of (visualization image, JSON results string) """ # Load model if not already loaded if load_model() is None: return None, json.dumps({"error": "Model not available"}) try: # Convert to PIL if needed if not isinstance(input_image, np.ndarray): input_image = np.array(input_image) # Run inference results = model.predict(input_image, verbose=False) # Process keypoint data keypoint_data = {} if not results or len(results) == 0: return input_image, json.dumps({"error": "No pose detection results found"}) result = results[0] if not hasattr(result, "keypoints") or result.keypoints is None: return input_image, json.dumps({"error": "No keypoints detected in the image"}) try: keypoints = result.keypoints.data.cpu().numpy() except AttributeError: return input_image, json.dumps({"error": "Error accessing keypoints data"}) if len(keypoints) == 0: return input_image, json.dumps({"error": "No people detected in the image"}) # Get first person's keypoints kp = keypoints[0] # Extract keypoints for idx, keypoint_info in KEYPOINTS.items(): if idx < len(kp) and kp[idx][2] > 0.5: # Confidence threshold x, y, conf = kp[idx] keypoint_data[keypoint_info["name"]] = { "x": int(x), "y": int(y), "confidence": float(conf) } # Add groin point (midpoint between points 11 and 12) if len(kp) > 12 and kp[11][2] > 0.5 and kp[12][2] > 0.5: groin_x = int((kp[11][0] + kp[12][0]) / 2) groin_y = int((kp[11][1] + kp[12][1]) / 2) groin_conf = (float(kp[11][2]) + float(kp[12][2])) / 2 keypoint_data["groin"] = { "x": groin_x, "y": groin_y, "confidence": groin_conf } # Create visualization image vis_image = Image.fromarray(input_image.copy()) draw = ImageDraw.Draw(vis_image) # Draw keypoints for point_name, point_data in keypoint_data.items(): x, y = point_data["x"], point_data["y"] # Draw a circle at each keypoint radius = 5 draw.ellipse( [(x - radius, y - radius), (x + radius, y + radius)], fill="red" ) # Add text label draw.text((x + 10, y), point_name, fill="black") return np.array(vis_image), json.dumps({"keypoints": keypoint_data}, indent=2) except Exception as e: return input_image, json.dumps({"error": f"Error processing image: {str(e)}"}) # Create Gradio interface def create_gradio_app(): with gr.Blocks() as demo: gr.Markdown("# YOLO Pose Estimation API") gr.Markdown("Upload an image to detect pose keypoints") with gr.Row(): with gr.Column(): input_image = gr.Image(type="numpy", label="Input Image") submit_btn = gr.Button("Process Image") with gr.Column(): output_image = gr.Image(label="Visualization") output_json = gr.JSON(label="Keypoint Data") submit_btn.click( fn=process_image, inputs=[input_image], outputs=[output_image, output_json] ) # Add API documentation gr.Markdown(""" ## API Usage This Gradio app also provides a REST API endpoint at `/api/predict`. Example usage: ```python import requests # Send a POST request to the API endpoint response = requests.post( "YOUR_HUGGINGFACE_SPACE_URL/api/predict", files={"input_image": open("image.jpg", "rb")} ) # Process results if response.status_code == 200: results = response.json() keypoints = results.get("keypoints", {}) print(keypoints) else: print(f"Error: {response.text}") ``` """) return demo demo = create_gradio_app() # Launch app if __name__ == "__main__": demo.launch() else: # For Hugging Face Spaces demo.launch(share=False)