import argparse import numpy as np import torch from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification parser = argparse.ArgumentParser(description="Evaluate a fine-tuned DistilBERT model.") parser.add_argument("--task", type=str, required=True, choices=["classification", "nli"], help="The evaluation task.") parser.add_argument("--model_dir", type=str, required=True, help="Path to your saved model directory.") args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained(args.model_dir) model = AutoModelForSequenceClassification.from_pretrained(args.model_dir) if args.task == "classification": dataset = load_dataset("glue", "sst2", split="validation").select(range(200)) dataset = dataset.map(lambda e: tokenizer(e["sentence"], truncation=True, padding="max_length"), batched=True) labels = dataset["label"] elif args.task == "nli": dataset = load_dataset("snli", split="validation") dataset = dataset.filter(lambda x: x["label"] != -1).select(range(200)) dataset = dataset.map(lambda e: tokenizer(e["premise"], e["hypothesis"], truncation=True, padding="max_length"), batched=True) labels = dataset["label"] dataset.set_format(type="torch", columns=["input_ids", "attention_mask"]) loader = torch.utils.data.DataLoader(dataset, batch_size=8) all_preds = [] model.eval() with torch.no_grad(): for batch in loader: outputs = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"]) logits = outputs.logits preds = torch.argmax(logits, dim=-1) all_preds.extend(preds.cpu().numpy()) accuracy = (np.array(all_preds) == np.array(labels)).mean() print(f"Accuracy on {args.task} validation set: {accuracy:.2%}")