Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
# Load model and tokenizer
|
5 |
+
model_name = "shenzye46/SmolLM-135M-fine-tuned-recepie" # Replace with your model name
|
6 |
+
tokenizer_name = "HuggingFaceTB/SmolLM-135M"
|
7 |
+
|
8 |
+
def load_model_and_tokenizer():
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(tokenizer_name)
|
11 |
+
return tokenizer, model
|
12 |
+
|
13 |
+
tokenizer, model = load_model_and_tokenizer()
|
14 |
+
|
15 |
+
def generate_recipe(recipe_name):
|
16 |
+
"""Generate cooking method given a recipe name."""
|
17 |
+
prompt = f"Recipe Name: {recipe_name}\nInstructions: "
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
19 |
+
outputs = model.generate(inputs["input_ids"], max_length=512, num_return_sequences=1, do_sample=True)
|
20 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
# Return only the method part, splitting after 'Method:'
|
22 |
+
return generated_text.split("Method:")[-1].strip()
|
23 |
+
|
24 |
+
# Create Gradio interface
|
25 |
+
interface = gr.Interface(
|
26 |
+
fn=generate_recipe,
|
27 |
+
inputs=gr.Textbox(label="Recipe Name", placeholder="Enter the recipe name, e.g., Chocolate Cake"),
|
28 |
+
outputs=gr.Textbox(label="Cooking Method"),
|
29 |
+
title="Recipe Generator",
|
30 |
+
description="Enter the name of a recipe, and the model will generate the method to cook it!",
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the app
|
34 |
+
interface.launch()
|