Spaces:
Running
Running
Commit
·
2a21e9f
1
Parent(s):
5f767e8
Deploy to HF Space
Browse files- __pycache__/configs.cpython-39.pyc +0 -0
- __pycache__/fastapi_app.cpython-39.pyc +0 -0
- __pycache__/models.cpython-39.pyc +0 -0
- __pycache__/utils.cpython-39.pyc +0 -0
- clear.py +49 -0
- configs.py +252 -0
- extract_pr_comment.py +46 -0
- fastapi_app.py +153 -0
- models.py +208 -0
- test.py +29 -0
- utils.py +823 -0
__pycache__/configs.cpython-39.pyc
ADDED
Binary file (5.38 kB). View file
|
|
__pycache__/fastapi_app.cpython-39.pyc
ADDED
Binary file (4.81 kB). View file
|
|
__pycache__/models.cpython-39.pyc
ADDED
Binary file (6.67 kB). View file
|
|
__pycache__/utils.cpython-39.pyc
ADDED
Binary file (27.8 kB). View file
|
|
clear.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from clearml import Model
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
# Import needed classes for local loading and LoRA construction
|
5 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
+
from peft import LoraConfig, get_peft_model
|
7 |
+
|
8 |
+
# 1. Download the LoRA checkpoint artifact from ClearML
|
9 |
+
CLEARML_MODEL_ID = "34e25deb24c64b74b29c8519ed15fe3e"
|
10 |
+
model_obj = Model(model_id=CLEARML_MODEL_ID)
|
11 |
+
checkpoint_path = model_obj.get_local_copy()
|
12 |
+
adapter_dir = os.path.dirname(checkpoint_path)
|
13 |
+
print(f"LoRA checkpoint downloaded to: {checkpoint_path}")
|
14 |
+
|
15 |
+
# 2. Load the base pretrained CodeT5 model and tokenizer from local config.json directory
|
16 |
+
BASE_MODEL_PATH = "microsoft/codereviewer"
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
|
18 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(BASE_MODEL_PATH)
|
19 |
+
|
20 |
+
# Print all base model parameters and their shapes
|
21 |
+
print("\nBase model parameters:")
|
22 |
+
for name, param in base_model.named_parameters():
|
23 |
+
print(f"{name}: {tuple(param.shape)}")
|
24 |
+
|
25 |
+
# 3. Reconstruct and attach LoRA adapters
|
26 |
+
lora_config = LoraConfig(
|
27 |
+
r=64,
|
28 |
+
lora_alpha=128,
|
29 |
+
target_modules=["q", "k", "v", "o", "wi", "wo"],
|
30 |
+
lora_dropout=0.05,
|
31 |
+
bias="none",
|
32 |
+
task_type="SEQ_2_SEQ_LM"
|
33 |
+
)
|
34 |
+
model = get_peft_model(base_model, lora_config)
|
35 |
+
|
36 |
+
# 4. Load LoRA adapter weights from ClearML checkpoint
|
37 |
+
adapter_state = torch.load(checkpoint_path, map_location="cpu")
|
38 |
+
model.load_state_dict(adapter_state, strict=False)
|
39 |
+
|
40 |
+
# 5. Move to CPU and set evaluation mode
|
41 |
+
model.to("cpu").eval()
|
42 |
+
|
43 |
+
print("Model with LoRA adapters loaded and ready for inference.")
|
44 |
+
|
45 |
+
# Print out all LoRA adapter parameter names and shapes as before
|
46 |
+
print("\nFinetuned (LoRA adapter) parameters:")
|
47 |
+
for name, param in model.named_parameters():
|
48 |
+
if "lora_" in name:
|
49 |
+
print(f"{name}: {tuple(param.shape)}")
|
configs.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
import logging
|
4 |
+
import multiprocessing
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
def add_args(parser):
|
11 |
+
parser.add_argument(
|
12 |
+
"--task",
|
13 |
+
type=str,
|
14 |
+
required=False,
|
15 |
+
choices=[
|
16 |
+
"review",
|
17 |
+
],
|
18 |
+
)
|
19 |
+
parser.add_argument(
|
20 |
+
"--model_type",
|
21 |
+
default="codet5",
|
22 |
+
type=str,
|
23 |
+
choices=["roberta", "t5", "bart", "codet5", "scratch"],
|
24 |
+
)
|
25 |
+
parser.add_argument("--add_lang_ids", action="store_true")
|
26 |
+
parser.add_argument("--from_scratch", action="store_true")
|
27 |
+
parser.add_argument("--debug", action="store_true")
|
28 |
+
parser.add_argument("--start_epoch", default=0, type=int)
|
29 |
+
parser.add_argument("--train_epochs", default=10, type=int)
|
30 |
+
parser.add_argument("--tokenizer_path", type=str, required=False)
|
31 |
+
|
32 |
+
parser.add_argument(
|
33 |
+
"--output_dir",
|
34 |
+
default=None,
|
35 |
+
type=str,
|
36 |
+
required=False,
|
37 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
38 |
+
)
|
39 |
+
parser.add_argument(
|
40 |
+
"--load_model_path",
|
41 |
+
default=None,
|
42 |
+
type=str,
|
43 |
+
required=False
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--model_name_or_path",
|
47 |
+
default=None,
|
48 |
+
type=str,
|
49 |
+
help="Path to trained model: Should contain the .bin files",
|
50 |
+
)
|
51 |
+
## Other parameters
|
52 |
+
parser.add_argument(
|
53 |
+
"--train_path",
|
54 |
+
default=None,
|
55 |
+
type=str,
|
56 |
+
help="The pretrain files path. Should contain the .jsonl files for this task.",
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
"--eval_chunkname",
|
60 |
+
default=None,
|
61 |
+
type=str,
|
62 |
+
help="The eval file name.",
|
63 |
+
)
|
64 |
+
parser.add_argument(
|
65 |
+
"--train_filename",
|
66 |
+
default=None,
|
67 |
+
type=str,
|
68 |
+
help="The train filename. Should contain the .jsonl files for this task.",
|
69 |
+
)
|
70 |
+
parser.add_argument(
|
71 |
+
"--dev_filename",
|
72 |
+
default=None,
|
73 |
+
type=str,
|
74 |
+
help="The dev filename. Should contain the .jsonl files for this task.",
|
75 |
+
)
|
76 |
+
parser.add_argument(
|
77 |
+
"--test_filename",
|
78 |
+
default=None,
|
79 |
+
type=str,
|
80 |
+
help="The test filename. Should contain the .jsonl files for this task.",
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--gold_filename",
|
84 |
+
default=None,
|
85 |
+
type=str,
|
86 |
+
help="The gold filename. Should contain the .jsonl files for this task.",
|
87 |
+
)
|
88 |
+
parser.add_argument(
|
89 |
+
"--config_name",
|
90 |
+
default="Salesforce/codet5-base",
|
91 |
+
type=str,
|
92 |
+
help="Pretrained config name or path if not the same as model_name",
|
93 |
+
)
|
94 |
+
parser.add_argument(
|
95 |
+
"--max_source_length",
|
96 |
+
default=64,
|
97 |
+
type=int,
|
98 |
+
help="The maximum total source sequence length after tokenization. Sequences longer "
|
99 |
+
"than this will be truncated, sequences shorter will be padded.",
|
100 |
+
)
|
101 |
+
parser.add_argument(
|
102 |
+
"--max_target_length",
|
103 |
+
default=32,
|
104 |
+
type=int,
|
105 |
+
help="The maximum total target sequence length after tokenization. Sequences longer "
|
106 |
+
"than this will be truncated, sequences shorter will be padded.",
|
107 |
+
)
|
108 |
+
parser.add_argument(
|
109 |
+
"--do_train", action="store_true", help="Whether to run eval on the train set."
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--do_eval", action="store_true", help="Whether to run eval on the dev set."
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--do_test", action="store_true", help="Whether to run eval on the dev set."
|
116 |
+
)
|
117 |
+
parser.add_argument(
|
118 |
+
"--raw_input", action="store_true", help="Whether to use simple input format (set for baselines)."
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--do_lower_case",
|
122 |
+
action="store_true",
|
123 |
+
help="Set this flag if you are using an uncased model.",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--no_cuda", action="store_true", help="Avoid using CUDA when available"
|
127 |
+
)
|
128 |
+
parser.add_argument(
|
129 |
+
"--train_batch_size",
|
130 |
+
default=8,
|
131 |
+
type=int,
|
132 |
+
help="Batch size per GPU/CPU for training.",
|
133 |
+
)
|
134 |
+
parser.add_argument(
|
135 |
+
"--eval_batch_size",
|
136 |
+
default=8,
|
137 |
+
type=int,
|
138 |
+
help="Batch size per GPU/CPU for evaluation.",
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"--gradient_accumulation_steps",
|
142 |
+
type=int,
|
143 |
+
default=1,
|
144 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
145 |
+
)
|
146 |
+
parser.add_argument(
|
147 |
+
"--learning_rate",
|
148 |
+
default=5e-5,
|
149 |
+
type=float,
|
150 |
+
help="The initial learning rate for Adam.",
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--mask_rate", default=0.15, type=float, help="The masked rate of input lines.",
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--beam_size", default=6, type=int, help="beam size for beam search"
|
157 |
+
)
|
158 |
+
parser.add_argument(
|
159 |
+
"--weight_decay", default=0.0, type=float, help="Weight deay if we apply some."
|
160 |
+
)
|
161 |
+
parser.add_argument(
|
162 |
+
"--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer."
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
|
166 |
+
)
|
167 |
+
parser.add_argument(
|
168 |
+
"--save_steps", default=-1, type=int,
|
169 |
+
)
|
170 |
+
parser.add_argument(
|
171 |
+
"--log_steps", default=-1, type=int,
|
172 |
+
)
|
173 |
+
parser.add_argument("--eval_steps", default=-1, type=int, help="")
|
174 |
+
parser.add_argument("--eval_file", default="", type=str)
|
175 |
+
parser.add_argument("--out_file", default="", type=str)
|
176 |
+
parser.add_argument("--break_cnt", default=-1, type=int)
|
177 |
+
parser.add_argument("--train_steps", default=-1, type=int, help="")
|
178 |
+
parser.add_argument(
|
179 |
+
"--warmup_steps", default=100, type=int, help="Linear warmup over warmup_steps."
|
180 |
+
)
|
181 |
+
parser.add_argument(
|
182 |
+
"--gpu_per_node",
|
183 |
+
type=int,
|
184 |
+
default=4,
|
185 |
+
help="gpus per node",
|
186 |
+
)
|
187 |
+
parser.add_argument(
|
188 |
+
"--node_index",
|
189 |
+
type=int,
|
190 |
+
default=0,
|
191 |
+
help="For distributed training: node_index",
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--local_rank",
|
195 |
+
type=int,
|
196 |
+
default=-1,
|
197 |
+
help="For distributed training: local_rank",
|
198 |
+
)
|
199 |
+
parser.add_argument(
|
200 |
+
"--seed", type=int, default=2233, help="random seed for initialization"
|
201 |
+
) # previous one 42
|
202 |
+
# Or in configs.py if add_args is defined there
|
203 |
+
|
204 |
+
parser.add_argument(
|
205 |
+
"--clearml_train_dataset_id",
|
206 |
+
type=str,
|
207 |
+
default=None,
|
208 |
+
help="ClearML Dataset ID to fetch training data from. Overrides train_filename if provided.",
|
209 |
+
)
|
210 |
+
parser.add_argument(
|
211 |
+
"--clearml_valid_dataset_id",
|
212 |
+
type=str,
|
213 |
+
default=None,
|
214 |
+
help="ClearML Dataset ID to fetch validation data from. Overrides dev_filename if provided.",
|
215 |
+
)
|
216 |
+
args = parser.parse_args()
|
217 |
+
return args
|
218 |
+
|
219 |
+
|
220 |
+
def set_dist(args):
|
221 |
+
# Setup CUDA, GPU & distributed training
|
222 |
+
if args.local_rank == -1 or args.no_cuda:
|
223 |
+
device = torch.device(
|
224 |
+
"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
|
225 |
+
)
|
226 |
+
args.n_gpu = torch.cuda.device_count()
|
227 |
+
else:
|
228 |
+
# Setup for distributed data parallel
|
229 |
+
torch.cuda.set_device(args.local_rank)
|
230 |
+
device = torch.device("cuda", args.local_rank)
|
231 |
+
torch.distributed.init_process_group(backend="nccl")
|
232 |
+
args.n_gpu = 1
|
233 |
+
cpu_count = multiprocessing.cpu_count()
|
234 |
+
logger.warning(
|
235 |
+
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, cpu count: %d",
|
236 |
+
args.local_rank,
|
237 |
+
device,
|
238 |
+
args.n_gpu,
|
239 |
+
bool(args.local_rank != -1),
|
240 |
+
cpu_count,
|
241 |
+
)
|
242 |
+
args.device = device
|
243 |
+
args.cpu_count = cpu_count
|
244 |
+
|
245 |
+
|
246 |
+
def set_seed(args):
|
247 |
+
"""set random seed."""
|
248 |
+
random.seed(args.seed)
|
249 |
+
np.random.seed(args.seed)
|
250 |
+
torch.manual_seed(args.seed)
|
251 |
+
# if args.n_gpu > 0:
|
252 |
+
torch.cuda.manual_seed_all(args.seed)
|
extract_pr_comment.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import base64
|
4 |
+
import requests
|
5 |
+
from github import Github
|
6 |
+
|
7 |
+
# Path to the GitHub Actions event payload
|
8 |
+
event_path = os.environ.get("GITHUB_EVENT_PATH")
|
9 |
+
if not event_path or not os.path.exists(event_path):
|
10 |
+
print("No event payload found.")
|
11 |
+
exit(1)
|
12 |
+
|
13 |
+
with open(event_path, "r") as f:
|
14 |
+
event = json.load(f)
|
15 |
+
|
16 |
+
# Only proceed if this is a PR comment event
|
17 |
+
if "pull_request" not in event.get("issue", {}):
|
18 |
+
print("Not a PR comment event.")
|
19 |
+
exit(0)
|
20 |
+
|
21 |
+
pr_number = event["issue"]["number"]
|
22 |
+
comment_body = event["comment"]["body"]
|
23 |
+
repo_full_name = event["repository"]["full_name"]
|
24 |
+
token = os.environ.get("GITHUB_TOKEN")
|
25 |
+
|
26 |
+
if not token:
|
27 |
+
print("No GITHUB_TOKEN found in environment.")
|
28 |
+
exit(1)
|
29 |
+
|
30 |
+
gh = Github(token)
|
31 |
+
repo = gh.get_repo(repo_full_name)
|
32 |
+
pr = repo.get_pull(pr_number)
|
33 |
+
|
34 |
+
files = []
|
35 |
+
for file in pr.get_files():
|
36 |
+
cf = repo.get_contents(file.filename, ref=pr.head.sha)
|
37 |
+
content = base64.b64decode(cf.content).decode("utf-8")
|
38 |
+
files.append({"filename": file.filename, "content": content})
|
39 |
+
|
40 |
+
fastapi_url = "http://127.0.0.1:8000/pr-comments"
|
41 |
+
payload = {
|
42 |
+
"comment": comment_body,
|
43 |
+
"files": files
|
44 |
+
}
|
45 |
+
response = requests.post(fastapi_url, json=payload)
|
46 |
+
print(f"FastAPI response: {response.status_code} {response.text}")
|
fastapi_app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request, Form
|
2 |
+
from fastapi.responses import HTMLResponse, RedirectResponse, JSONResponse
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from typing import List
|
5 |
+
from clearml import Model
|
6 |
+
import torch
|
7 |
+
from configs import add_args
|
8 |
+
from models import build_or_load_gen_model
|
9 |
+
import argparse
|
10 |
+
from argparse import Namespace
|
11 |
+
import os
|
12 |
+
from peft import PeftModel, PeftConfig, get_peft_model, LoraConfig
|
13 |
+
|
14 |
+
MAX_SOURCE_LENGTH = 512
|
15 |
+
|
16 |
+
def pad_assert(tokenizer, source_ids):
|
17 |
+
source_ids = source_ids[:MAX_SOURCE_LENGTH - 2]
|
18 |
+
source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
|
19 |
+
pad_len = MAX_SOURCE_LENGTH - len(source_ids)
|
20 |
+
source_ids += [tokenizer.pad_id] * pad_len
|
21 |
+
assert len(source_ids) == MAX_SOURCE_LENGTH, "Not equal length."
|
22 |
+
return source_ids
|
23 |
+
|
24 |
+
# Encode code content and comment into model input
|
25 |
+
def encode_diff(tokenizer, code, comment):
|
26 |
+
# Tokenize code file content
|
27 |
+
code_ids = tokenizer.encode(code, max_length=MAX_SOURCE_LENGTH, truncation=True)[1:-1]
|
28 |
+
# Tokenize comment
|
29 |
+
comment_ids = tokenizer.encode(comment, max_length=MAX_SOURCE_LENGTH, truncation=True)[1:-1]
|
30 |
+
# Concatenate: [BOS] + code + [EOS] + [msg_id] + comment
|
31 |
+
source_ids = [tokenizer.bos_id] + code_ids + [tokenizer.eos_id]
|
32 |
+
source_ids += [tokenizer.msg_id] + comment_ids
|
33 |
+
# Pad/truncate to fixed length
|
34 |
+
source_ids = source_ids[:MAX_SOURCE_LENGTH - 2]
|
35 |
+
source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
|
36 |
+
pad_len = MAX_SOURCE_LENGTH - len(source_ids)
|
37 |
+
source_ids += [tokenizer.pad_id] * pad_len
|
38 |
+
assert len(source_ids) == MAX_SOURCE_LENGTH, "Not equal length."
|
39 |
+
return source_ids
|
40 |
+
|
41 |
+
# Load base model architecture and tokenizer from HuggingFace
|
42 |
+
BASE_MODEL_NAME = "microsoft/codereviewer"
|
43 |
+
args = Namespace(
|
44 |
+
model_name_or_path=BASE_MODEL_NAME,
|
45 |
+
load_model_path=None,
|
46 |
+
# Add other necessary default arguments if build_or_load_gen_model requires them
|
47 |
+
)
|
48 |
+
print(f"Loading base model architecture and tokenizer from: {BASE_MODEL_NAME}")
|
49 |
+
config, base_model, tokenizer = build_or_load_gen_model(args)
|
50 |
+
print("Base model architecture and tokenizer loaded.")
|
51 |
+
|
52 |
+
# Download the fine-tuned weights from ClearML
|
53 |
+
CLEARML_MODEL_ID = "34e25deb24c64b74b29c8519ed15fe3e"
|
54 |
+
model_obj = Model(model_id=CLEARML_MODEL_ID)
|
55 |
+
finetuned_weights_path = model_obj.get_local_copy()
|
56 |
+
adapter_dir = os.path.dirname(finetuned_weights_path)
|
57 |
+
|
58 |
+
print(f"Fine-tuned adapter weights downloaded to directory: {adapter_dir}")
|
59 |
+
|
60 |
+
# Create LoRA configuration matching the fine-tuned checkpoint
|
61 |
+
lora_cfg = LoraConfig(
|
62 |
+
r=64,
|
63 |
+
lora_alpha=128,
|
64 |
+
target_modules=["q", "wo", "wi", "v", "o", "k"],
|
65 |
+
lora_dropout=0.05,
|
66 |
+
bias="none",
|
67 |
+
task_type="SEQ_2_SEQ_LM"
|
68 |
+
)
|
69 |
+
# Wrap base model with PEFT LoRA
|
70 |
+
peft_model = get_peft_model(base_model, lora_cfg)
|
71 |
+
# Load adapter-only weights and merge into base
|
72 |
+
adapter_state = torch.load(finetuned_weights_path, map_location="cpu")
|
73 |
+
peft_model.load_state_dict(adapter_state, strict=False)
|
74 |
+
model = peft_model.merge_and_unload()
|
75 |
+
print("Merged base model with LoRA adapters.")
|
76 |
+
|
77 |
+
model.to("cpu")
|
78 |
+
model.eval()
|
79 |
+
print("Model ready for inference.")
|
80 |
+
|
81 |
+
app = FastAPI()
|
82 |
+
|
83 |
+
last_payload = {"comment": "", "files": []}
|
84 |
+
last_infer_result = {"generated_code": ""}
|
85 |
+
|
86 |
+
class FileContent(BaseModel):
|
87 |
+
filename: str
|
88 |
+
content: str
|
89 |
+
|
90 |
+
class PRPayload(BaseModel):
|
91 |
+
comment: str
|
92 |
+
files: List[FileContent]
|
93 |
+
|
94 |
+
class InferenceRequest(BaseModel):
|
95 |
+
comment: str
|
96 |
+
files: List[FileContent]
|
97 |
+
|
98 |
+
|
99 |
+
@app.get("/")
|
100 |
+
def root():
|
101 |
+
return {"message": "FastAPI PR comment service is running"}
|
102 |
+
|
103 |
+
@app.post("/pr-comments")
|
104 |
+
async def receive_pr_comment(payload: PRPayload):
|
105 |
+
global last_payload
|
106 |
+
last_payload = payload.dict()
|
107 |
+
# Return the received payload as JSON and also redirect to /show
|
108 |
+
return JSONResponse(content={"status": "received", "payload": last_payload, "redirect": "/show"})
|
109 |
+
|
110 |
+
@app.get("/show", response_class=HTMLResponse)
|
111 |
+
def show_last_comment():
|
112 |
+
html = f"<h2>Received Comment</h2><p>{last_payload['comment']}</p><hr>"
|
113 |
+
for file in last_payload["files"]:
|
114 |
+
html += f"<h3>{file['filename']}</h3><pre>{file['content']}</pre><hr>"
|
115 |
+
return html
|
116 |
+
|
117 |
+
@app.post("/infer")
|
118 |
+
async def infer(request: InferenceRequest):
|
119 |
+
global last_infer_result
|
120 |
+
print("[DEBUG] Received /infer request with:", request.dict())
|
121 |
+
|
122 |
+
code = request.files[0].content if request.files else ""
|
123 |
+
source_ids = encode_diff(tokenizer, code, request.comment)
|
124 |
+
# print("[DEBUG] source_ids:", source_ids)
|
125 |
+
#tokens = [tokenizer.decode([sid], skip_special_tokens=False) for sid in source_ids]
|
126 |
+
#print("[DEBUG] tokens:", tokens)
|
127 |
+
inputs = torch.tensor([source_ids], dtype=torch.long)
|
128 |
+
inputs_mask = inputs.ne(tokenizer.pad_id)
|
129 |
+
|
130 |
+
preds = model.generate(
|
131 |
+
inputs,
|
132 |
+
attention_mask=inputs_mask,
|
133 |
+
use_cache=True,
|
134 |
+
num_beams=5,
|
135 |
+
early_stopping=True,
|
136 |
+
max_length=100,
|
137 |
+
num_return_sequences=1
|
138 |
+
)
|
139 |
+
|
140 |
+
pred = preds[0].cpu().numpy()
|
141 |
+
pred_nl = tokenizer.decode(pred[2:], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
142 |
+
last_infer_result = {"generated_code": pred_nl}
|
143 |
+
return last_infer_result
|
144 |
+
|
145 |
+
@app.get("/show-infer", response_class=HTMLResponse)
|
146 |
+
def show_infer_result():
|
147 |
+
html = f"<h2>Generated Message</h2><pre>{last_infer_result['generated_code']}</pre>"
|
148 |
+
return html
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
# Place any CLI/training logic here if needed
|
152 |
+
# This block is NOT executed when running with uvicorn
|
153 |
+
pass
|
models.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss
|
6 |
+
import numpy as np
|
7 |
+
from utils import MyTokenizer
|
8 |
+
from transformers import (
|
9 |
+
RobertaConfig,
|
10 |
+
RobertaModel,
|
11 |
+
RobertaTokenizer,
|
12 |
+
BartConfig,
|
13 |
+
BartForConditionalGeneration,
|
14 |
+
BartTokenizer,
|
15 |
+
T5Config,
|
16 |
+
T5ForConditionalGeneration,
|
17 |
+
T5Tokenizer,
|
18 |
+
)
|
19 |
+
import logging
|
20 |
+
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
class ReviewerModel(T5ForConditionalGeneration):
|
25 |
+
|
26 |
+
def __init__(self, config):
|
27 |
+
super().__init__(config)
|
28 |
+
self.cls_head = nn.Linear(self.config.d_model, 2, bias=True)
|
29 |
+
self.init()
|
30 |
+
|
31 |
+
def init(self):
|
32 |
+
nn.init.xavier_uniform_(self.lm_head.weight)
|
33 |
+
factor = self.config.initializer_factor
|
34 |
+
self.cls_head.weight.data.normal_(mean=0.0, \
|
35 |
+
std=factor * ((self.config.d_model) ** -0.5))
|
36 |
+
self.cls_head.bias.data.zero_()
|
37 |
+
|
38 |
+
def forward(
|
39 |
+
self, *argv, **kwargs
|
40 |
+
):
|
41 |
+
r"""
|
42 |
+
Doc from Huggingface transformers:
|
43 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
44 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ...,
|
45 |
+
config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for
|
46 |
+
labels in ``[0, ..., config.vocab_size]``
|
47 |
+
Returns:
|
48 |
+
Examples::
|
49 |
+
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
|
50 |
+
>>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
51 |
+
>>> model = T5ForConditionalGeneration.from_pretrained('t5-small')
|
52 |
+
>>> # training
|
53 |
+
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
|
54 |
+
>>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids
|
55 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
56 |
+
>>> loss = outputs.loss
|
57 |
+
>>> logits = outputs.logits
|
58 |
+
>>> # inference
|
59 |
+
>>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
|
60 |
+
>>> outputs = model.generate(input_ids)
|
61 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
62 |
+
>>> # studies have shown that owning a dog is good for you.
|
63 |
+
"""
|
64 |
+
if "cls" in kwargs:
|
65 |
+
assert (
|
66 |
+
"input_ids" in kwargs and \
|
67 |
+
"labels" in kwargs and \
|
68 |
+
"attention_mask" in kwargs
|
69 |
+
)
|
70 |
+
return self.cls(
|
71 |
+
input_ids=kwargs["input_ids"],
|
72 |
+
labels=kwargs["labels"],
|
73 |
+
attention_mask=kwargs["attention_mask"],
|
74 |
+
)
|
75 |
+
if "input_labels" in kwargs:
|
76 |
+
assert (
|
77 |
+
"input_ids" in kwargs and \
|
78 |
+
"input_labels" in kwargs and \
|
79 |
+
"decoder_input_ids" in kwargs and \
|
80 |
+
"attention_mask" in kwargs and \
|
81 |
+
"decoder_attention_mask" in kwargs
|
82 |
+
), "Please give these arg keys."
|
83 |
+
input_ids = kwargs["input_ids"]
|
84 |
+
input_labels = kwargs["input_labels"]
|
85 |
+
decoder_input_ids = kwargs["decoder_input_ids"]
|
86 |
+
attention_mask = kwargs["attention_mask"]
|
87 |
+
decoder_attention_mask = kwargs["decoder_attention_mask"]
|
88 |
+
if "encoder_loss" not in kwargs:
|
89 |
+
encoder_loss = True
|
90 |
+
else:
|
91 |
+
encoder_loss = kwargs["encoder_loss"]
|
92 |
+
return self.review_forward(input_ids, input_labels, decoder_input_ids, attention_mask, decoder_attention_mask, encoder_loss)
|
93 |
+
return super().forward(*argv, **kwargs)
|
94 |
+
|
95 |
+
def cls(
|
96 |
+
self,
|
97 |
+
input_ids,
|
98 |
+
labels,
|
99 |
+
attention_mask,
|
100 |
+
):
|
101 |
+
encoder_outputs = self.encoder( \
|
102 |
+
input_ids=input_ids,
|
103 |
+
attention_mask=attention_mask,
|
104 |
+
output_attentions=False,
|
105 |
+
return_dict=False
|
106 |
+
)
|
107 |
+
hidden_states = encoder_outputs[0]
|
108 |
+
first_hidden = hidden_states[:, 0, :]
|
109 |
+
first_hidden = nn.Dropout(0.3)(first_hidden)
|
110 |
+
logits = self.cls_head(first_hidden)
|
111 |
+
loss_fct = CrossEntropyLoss()
|
112 |
+
if labels != None:
|
113 |
+
loss = loss_fct(logits, labels)
|
114 |
+
return loss
|
115 |
+
return logits
|
116 |
+
|
117 |
+
def review_forward(
|
118 |
+
self,
|
119 |
+
input_ids,
|
120 |
+
input_labels,
|
121 |
+
decoder_input_ids,
|
122 |
+
attention_mask,
|
123 |
+
decoder_attention_mask,
|
124 |
+
encoder_loss=True
|
125 |
+
):
|
126 |
+
encoder_outputs = self.encoder( \
|
127 |
+
input_ids=input_ids,
|
128 |
+
attention_mask=attention_mask,
|
129 |
+
output_attentions=False,
|
130 |
+
return_dict=False
|
131 |
+
)
|
132 |
+
hidden_states = encoder_outputs[0]
|
133 |
+
decoder_inputs = self._shift_right(decoder_input_ids)
|
134 |
+
# Decode
|
135 |
+
decoder_outputs = self.decoder(
|
136 |
+
input_ids=decoder_inputs,
|
137 |
+
attention_mask=decoder_attention_mask,
|
138 |
+
encoder_hidden_states=hidden_states,
|
139 |
+
encoder_attention_mask=attention_mask,
|
140 |
+
output_attentions=False,
|
141 |
+
return_dict=False
|
142 |
+
)
|
143 |
+
sequence_output = decoder_outputs[0]
|
144 |
+
if self.config.tie_word_embeddings: # this is True default
|
145 |
+
sequence_output = sequence_output * (self.model_dim ** -0.5)
|
146 |
+
if encoder_loss:
|
147 |
+
# print(self.encoder.get_input_embeddings().weight.shape)
|
148 |
+
cls_logits = nn.functional.linear(hidden_states, self.encoder.get_input_embeddings().weight)
|
149 |
+
# cls_logits = self.cls_head(hidden_states)
|
150 |
+
lm_logits = self.lm_head(sequence_output)
|
151 |
+
if decoder_input_ids is not None:
|
152 |
+
lm_loss_fct = CrossEntropyLoss(ignore_index=0) # Warning: PAD_ID should be 0
|
153 |
+
loss = lm_loss_fct(lm_logits.view(-1, lm_logits.size(-1)), decoder_input_ids.view(-1))
|
154 |
+
if encoder_loss and input_labels is not None:
|
155 |
+
cls_loss_fct = CrossEntropyLoss(ignore_index=-100)
|
156 |
+
loss += cls_loss_fct(cls_logits.view(-1, cls_logits.size(-1)), input_labels.view(-1))
|
157 |
+
return loss
|
158 |
+
return cls_logits, lm_logits
|
159 |
+
|
160 |
+
def get_model_size(model):
|
161 |
+
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
|
162 |
+
model_size = sum([np.prod(p.size()) for p in model_parameters])
|
163 |
+
return "{}M".format(round(model_size / 1e6))
|
164 |
+
|
165 |
+
|
166 |
+
def build_or_load_gen_model(args):
|
167 |
+
config_class, model_class, tokenizer_class = T5Config, ReviewerModel, RobertaTokenizer
|
168 |
+
|
169 |
+
config = config_class.from_pretrained(args.model_name_or_path)
|
170 |
+
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
|
171 |
+
model = model_class.from_pretrained(args.model_name_or_path, config=config)
|
172 |
+
|
173 |
+
tokenizer.special_dict = {
|
174 |
+
f"<e{i}>" : tokenizer.get_vocab()[f"<e{i}>"] for i in range(99, -1, -1)
|
175 |
+
}
|
176 |
+
|
177 |
+
tokenizer.mask_id = tokenizer.get_vocab()["<mask>"]
|
178 |
+
tokenizer.bos_id = tokenizer.get_vocab()["<s>"]
|
179 |
+
tokenizer.pad_id = tokenizer.get_vocab()["<pad>"]
|
180 |
+
tokenizer.eos_id = tokenizer.get_vocab()["</s>"]
|
181 |
+
tokenizer.msg_id = tokenizer.get_vocab()["<msg>"]
|
182 |
+
tokenizer.keep_id = tokenizer.get_vocab()["<keep>"]
|
183 |
+
tokenizer.add_id = tokenizer.get_vocab()["<add>"]
|
184 |
+
tokenizer.del_id = tokenizer.get_vocab()["<del>"]
|
185 |
+
tokenizer.start_id = tokenizer.get_vocab()["<start>"]
|
186 |
+
tokenizer.end_id = tokenizer.get_vocab()["<end>"]
|
187 |
+
|
188 |
+
logger.info(
|
189 |
+
"Finish loading model [%s] from %s",
|
190 |
+
get_model_size(model),
|
191 |
+
args.model_name_or_path,
|
192 |
+
)
|
193 |
+
|
194 |
+
if args.load_model_path is not None:
|
195 |
+
model_path = os.path.join(args.load_model_path, "pytorch_model.bin")
|
196 |
+
logger.info("Reload model from {}".format(model_path))
|
197 |
+
try:
|
198 |
+
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
199 |
+
except RuntimeError:
|
200 |
+
saved = model.cls_head
|
201 |
+
model.cls_head = None
|
202 |
+
model.load_state_dict(torch.load(model_path, map_location="cpu"))
|
203 |
+
model.cls_head = saved
|
204 |
+
model.to(args.local_rank)
|
205 |
+
|
206 |
+
return config, model, tokenizer
|
207 |
+
|
208 |
+
|
test.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64 # For decoding Base64 content
|
2 |
+
import requests # For HTTP GET on raw_url
|
3 |
+
from github import Github # PyGithub
|
4 |
+
|
5 |
+
# ==== CHANGE VALUES BELOW ====================================
|
6 |
+
TOKEN = "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" # <-- Change: Your GitHub PAT
|
7 |
+
OWNER = "Habil7" # <-- Change: Repo owner
|
8 |
+
REPO_NAME = "git-demo" # <-- Change: Repo name
|
9 |
+
PR_NUMBER = 4 # <-- Change: Pull request number
|
10 |
+
# =============================================================
|
11 |
+
|
12 |
+
gh = Github(TOKEN)
|
13 |
+
repo = gh.get_repo(f"{OWNER}/{REPO_NAME}")
|
14 |
+
pr = repo.get_pull(PR_NUMBER)
|
15 |
+
print(pr)
|
16 |
+
|
17 |
+
# Print PR comments
|
18 |
+
print("\n--- PR Comments ---")
|
19 |
+
for comment in pr.get_issue_comments():
|
20 |
+
print(f"{comment.user.login}: {comment.body}")
|
21 |
+
|
22 |
+
print(f"Number of files in PR: {pr.get_files().totalCount}")
|
23 |
+
|
24 |
+
for file in pr.get_files():
|
25 |
+
print(f"\n=== {file.filename} ===")
|
26 |
+
# Fetch and decode via PyGithub get_contents
|
27 |
+
cf = repo.get_contents(file.filename, ref=pr.head.sha)
|
28 |
+
content_via_api = base64.b64decode(cf.content).decode("utf-8")
|
29 |
+
print(content_via_api)
|
utils.py
ADDED
@@ -0,0 +1,823 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re, json
|
2 |
+
import os, random
|
3 |
+
import torch, logging
|
4 |
+
from copy import deepcopy as cp
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from tokenizers import ByteLevelBPETokenizer
|
7 |
+
from transformers import T5Tokenizer, RobertaTokenizer
|
8 |
+
import nltk
|
9 |
+
|
10 |
+
logging.basicConfig(
|
11 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
12 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
13 |
+
level=logging.INFO,
|
14 |
+
)
|
15 |
+
logger = logging.getLogger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
class MyTokenizer(object):
|
20 |
+
"""
|
21 |
+
Wrapper for ByteLevelBPETokenizer
|
22 |
+
"""
|
23 |
+
def __init__(self, vocab=None, merges=None, **kwargs):
|
24 |
+
self.tokenizer = ByteLevelBPETokenizer(vocab, merges, **kwargs)
|
25 |
+
self.update_id2token()
|
26 |
+
|
27 |
+
@staticmethod
|
28 |
+
def from_pretrained(path):
|
29 |
+
vocabp = os.path.join(path, "vocab.json")
|
30 |
+
mergesp = os.path.join(path, "merges.txt")
|
31 |
+
mytoken = MyTokenizer(vocabp, mergesp)
|
32 |
+
return mytoken
|
33 |
+
|
34 |
+
def update_id2token(self):
|
35 |
+
vocab = self.tokenizer.get_vocab()
|
36 |
+
self.id2token = {vocab[token]: token for token in vocab}
|
37 |
+
|
38 |
+
def add_special_tokens(self, dic):
|
39 |
+
for values in dic.values():
|
40 |
+
self.tokenizer.add_special_tokens(values)
|
41 |
+
self.update_id2token()
|
42 |
+
|
43 |
+
def convert_ids_to_tokens(self, ids):
|
44 |
+
vocab = self.id2token
|
45 |
+
return [vocab[i] for i in ids]
|
46 |
+
|
47 |
+
def decode(self, ids, **kwargs): ##### to be update
|
48 |
+
tokens = self.convert_ids_to_tokens(ids)
|
49 |
+
return " ".join(tokens)
|
50 |
+
|
51 |
+
def encode(self, text, **kwargs):
|
52 |
+
text = text.encode("ascii", errors="ignore").decode("ascii")
|
53 |
+
return self.tokenizer.encode(text).ids
|
54 |
+
|
55 |
+
def get_vocab(self):
|
56 |
+
return self.tokenizer.get_vocab()
|
57 |
+
|
58 |
+
def __len__(self):
|
59 |
+
return len(self.tokenizer.get_vocab())
|
60 |
+
|
61 |
+
|
62 |
+
class RefineFeatures(object):
|
63 |
+
def __init__(self, example_id, source_ids, target_ids):
|
64 |
+
self.example_id = example_id
|
65 |
+
self.source_ids = source_ids
|
66 |
+
self.target_ids = target_ids
|
67 |
+
|
68 |
+
class RefineDataset(Dataset):
|
69 |
+
def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
|
70 |
+
self.tokenizer = tokenizer
|
71 |
+
self.args = args
|
72 |
+
logger.info("Reading examples from {}".format(file_path))
|
73 |
+
examples = [json.loads(line) for line in open(file_path)]
|
74 |
+
for i in range(len(examples)):
|
75 |
+
if "id" not in examples[i]:
|
76 |
+
examples[i]["id"] = i
|
77 |
+
if samplenum > 0:
|
78 |
+
examples = examples[:samplenum]
|
79 |
+
logger.info(f"Tokenize examples: {file_path}")
|
80 |
+
self.feats = pool.map(self.tokenize, \
|
81 |
+
[(example, tokenizer, args) for example in examples])
|
82 |
+
|
83 |
+
def tokenize(self, item):
|
84 |
+
example, tokenizer, args = item
|
85 |
+
oldlines = example["old"].split("\n")
|
86 |
+
newlines = example["new"].split("\n")
|
87 |
+
oldlines = [line[1:].strip() for line in oldlines]
|
88 |
+
newlines = [line[1:].strip() for line in newlines]
|
89 |
+
oldlines = "\n".join(oldlines)
|
90 |
+
newlines = "\n".join(newlines)
|
91 |
+
oldlines = "<add>" + oldlines.replace("\n", "<add>")
|
92 |
+
newlines = "<add>" + newlines.replace("\n", "<add>")
|
93 |
+
comment = example["comment"]
|
94 |
+
srcids = self.encode_remove(tokenizer, oldlines, args)
|
95 |
+
srcids += [tokenizer.msg_id] + self.encode_remove(tokenizer, comment, args)
|
96 |
+
tgtids = self.encode_remove(tokenizer, newlines, args)
|
97 |
+
srcids, tgtids = self.pad_assert(srcids, tgtids, args, tokenizer)
|
98 |
+
return RefineFeatures(example["id"], srcids, tgtids)
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def process_pred_gold(pred, gold):
|
102 |
+
gold = gold.split("\n")
|
103 |
+
gold = [line[1:].strip() for line in gold]
|
104 |
+
gold = " ".join(gold)
|
105 |
+
pred = " ".join(pred.split())
|
106 |
+
pred = pred.replace("<add> ", "")
|
107 |
+
return pred, gold
|
108 |
+
|
109 |
+
def pad_assert(self, source_ids, target_ids, args, tokenizer):
|
110 |
+
source_ids = source_ids[:args.max_source_length - 2]
|
111 |
+
source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
|
112 |
+
pad_len = args.max_source_length - len(source_ids)
|
113 |
+
source_ids += [tokenizer.pad_id] * pad_len
|
114 |
+
target_ids = target_ids[:args.max_target_length - 2]
|
115 |
+
target_ids = [tokenizer.bos_id] + target_ids + [tokenizer.eos_id]
|
116 |
+
pad_len = args.max_target_length - len(target_ids)
|
117 |
+
target_ids += [tokenizer.pad_id] * pad_len
|
118 |
+
assert len(source_ids) == args.max_source_length, "Not equal length."
|
119 |
+
assert len(target_ids) == args.max_target_length, "Not equal length."
|
120 |
+
return source_ids, target_ids
|
121 |
+
|
122 |
+
def encode_remove(self, tokenizer, text, args):
|
123 |
+
text = tokenizer.encode(text, max_length=args.max_source_length, truncation=True)
|
124 |
+
if type(tokenizer) == T5Tokenizer:
|
125 |
+
return text[:-1]
|
126 |
+
elif type(tokenizer) == RobertaTokenizer:
|
127 |
+
return text[1:-1]
|
128 |
+
elif type(tokenizer) == MyTokenizer:
|
129 |
+
return text
|
130 |
+
else:
|
131 |
+
raise NotImplementedError
|
132 |
+
|
133 |
+
def __len__(self):
|
134 |
+
return len(self.feats)
|
135 |
+
|
136 |
+
def __getitem__(self, i):
|
137 |
+
return self.feats[i]
|
138 |
+
|
139 |
+
class SimpleRefineDataset(RefineDataset):
|
140 |
+
def tokenize(self, item):
|
141 |
+
example, tokenizer, args = item
|
142 |
+
oldlines = example["old"].split("\n")
|
143 |
+
newlines = example["new"].split("\n")
|
144 |
+
oldlines = [line[1:].strip() for line in oldlines]
|
145 |
+
newlines = [line[1:].strip() for line in newlines]
|
146 |
+
oldlines = " ".join(oldlines)
|
147 |
+
newlines = " ".join(newlines)
|
148 |
+
comment = example["comment"]
|
149 |
+
srcids = self.encode_remove(tokenizer, oldlines, args)
|
150 |
+
srcids += [tokenizer.msg_id] + self.encode_remove(tokenizer, comment, args)
|
151 |
+
tgtids = self.encode_remove(tokenizer, newlines, args)
|
152 |
+
srcids, tgtids = self.pad_assert(srcids, tgtids, args, tokenizer)
|
153 |
+
return RefineFeatures(example["id"], srcids, tgtids)
|
154 |
+
|
155 |
+
@staticmethod
|
156 |
+
def process_pred_gold(pred, gold):
|
157 |
+
gold = gold.split("\n")
|
158 |
+
gold = [line[1:].strip() for line in gold]
|
159 |
+
gold = " ".join(gold)
|
160 |
+
pred = " ".join(pred.split())
|
161 |
+
return pred, gold
|
162 |
+
|
163 |
+
|
164 |
+
class Seq2SeqDataset(RefineDataset):
|
165 |
+
def tokenize(self, item):
|
166 |
+
example, tokenizer, args = item
|
167 |
+
inputs, outputs = example["old"], example["new"]
|
168 |
+
inputs = " ".join(inputs.split())
|
169 |
+
outputs = " ".join(outputs.split())
|
170 |
+
srcids = self.encode_remove(tokenizer, inputs, args)
|
171 |
+
tgtids = self.encode_remove(tokenizer, outputs, args)
|
172 |
+
srcids, tgtids = self.pad_assert(srcids, tgtids, args, tokenizer)
|
173 |
+
return RefineFeatures(example["id"], srcids, tgtids)
|
174 |
+
|
175 |
+
@staticmethod
|
176 |
+
def process_pred_gold(pred, gold):
|
177 |
+
gold = " ".join(gold.split())
|
178 |
+
pred = " ".join(pred.split())
|
179 |
+
return pred, gold
|
180 |
+
|
181 |
+
|
182 |
+
class TextDataset(Dataset):
|
183 |
+
def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
|
184 |
+
self.cnt = 0
|
185 |
+
self.tokenizer = tokenizer
|
186 |
+
self.args = args
|
187 |
+
if isinstance(tokenizer, MyTokenizer):
|
188 |
+
tokenizer_type = "mytok"
|
189 |
+
elif isinstance(tokenizer, T5Tokenizer):
|
190 |
+
tokenizer_type = ""
|
191 |
+
elif isinstance(tokenizer, RobertaTokenizer):
|
192 |
+
tokenizer_type = "rb"
|
193 |
+
else:
|
194 |
+
tokenizer_type = "unk"
|
195 |
+
savep = file_path.replace(".jsonl", tokenizer_type + ".exps")
|
196 |
+
# savep = "/home/v-zhuoli1/lzzz/processed/chunk_25.exps"
|
197 |
+
if os.path.exists(savep):
|
198 |
+
logger.info("Loading examples from {}".format(savep))
|
199 |
+
examples = torch.load(savep)
|
200 |
+
else:
|
201 |
+
logger.info("Reading examples from {}".format(file_path))
|
202 |
+
examples = read_review_examples(file_path, samplenum, tokenizer)
|
203 |
+
logger.info(f"Tokenize examples: {file_path}")
|
204 |
+
examples = pool.map(self.tokenize, \
|
205 |
+
[(example, tokenizer, args) for example in examples])
|
206 |
+
torch.save(examples, savep)
|
207 |
+
logger.info("Convert examples to features...")
|
208 |
+
self.set_start_end_ids(examples)
|
209 |
+
self.featss = pool.map(self.convert_examples_to_features, \
|
210 |
+
[(example, tokenizer, args) for example in examples])
|
211 |
+
self.feats = [feat for feats in self.featss for feat in feats] # expand the lists
|
212 |
+
|
213 |
+
def __len__(self):
|
214 |
+
return len(self.feats)
|
215 |
+
|
216 |
+
def __getitem__(self, i):
|
217 |
+
return self.feats[i]
|
218 |
+
|
219 |
+
def reset_len(self, data_len):
|
220 |
+
assert len(self.feats) >= data_len
|
221 |
+
self.feats = self.feats[:data_len]
|
222 |
+
|
223 |
+
def set_start_end_ids(self, examples):
|
224 |
+
for example in examples:
|
225 |
+
labels = example.labels
|
226 |
+
start_id = 0
|
227 |
+
end_id = len(labels) - 1
|
228 |
+
for i, label in enumerate(labels):
|
229 |
+
if label != -100: # find the first label
|
230 |
+
start_id = i
|
231 |
+
break
|
232 |
+
for i in range(len(labels) - 1, -1, -1):
|
233 |
+
label = labels[i]
|
234 |
+
if label != -100:
|
235 |
+
end_id = i
|
236 |
+
break
|
237 |
+
example.start_id = start_id
|
238 |
+
example.end_id = end_id
|
239 |
+
|
240 |
+
def tokenize(self, item):
|
241 |
+
example, tokenizer, args = item
|
242 |
+
example.input = self.encode_remove(tokenizer, example.input, args)
|
243 |
+
e0id = tokenizer.special_dict["<e0>"]
|
244 |
+
inputs = " ".join(str(id) for id in example.input)
|
245 |
+
lines = inputs.split(" " + str(e0id) + " ")
|
246 |
+
lines = [
|
247 |
+
[int(v) for v in line.split(" ") if len(v) > 0] for line in lines
|
248 |
+
]
|
249 |
+
lens = [len(line) for line in lines]
|
250 |
+
# if 0 in lens:
|
251 |
+
# logger.info("Warning: empty line in an example.")
|
252 |
+
lens = list(map(len, lines))
|
253 |
+
curlen = len(lens) + sum(lens)
|
254 |
+
left, right = 0, len(lines)
|
255 |
+
while curlen > args.max_source_length - 2:
|
256 |
+
if left % 2 == 0:
|
257 |
+
curlen -= 1 + len(lines[left])
|
258 |
+
left += 1
|
259 |
+
else:
|
260 |
+
right -= 1
|
261 |
+
curlen -= 1 + len(lines[right])
|
262 |
+
lines = lines[left:right]
|
263 |
+
labels = example.labels[left:right]
|
264 |
+
assert len(lines) + sum(map(len, lines)) <= args.max_source_length - 2, "Too long inputs in TextDataset.tokenize."
|
265 |
+
if len(lines) != len(labels):
|
266 |
+
logger.info("Not equal length in TextDataset.tokenize.")
|
267 |
+
lines = lines[:len(labels)]
|
268 |
+
labels = labels[:len(lines)]
|
269 |
+
example.lines = lines
|
270 |
+
example.labels = labels
|
271 |
+
example.msg = self.encode_remove(tokenizer, example.msg, args)
|
272 |
+
return example
|
273 |
+
|
274 |
+
def convert_examples_to_features(self, item):
|
275 |
+
example, _, _ = item
|
276 |
+
if len(example.msg) > 0:
|
277 |
+
exs = []
|
278 |
+
for _ in range(3): # up sampling
|
279 |
+
if random.random() < 0.5:
|
280 |
+
exs.append(self.genmsg_example(item))
|
281 |
+
else:
|
282 |
+
exs.append(self.daemsg_example(item))
|
283 |
+
return exs
|
284 |
+
if random.random() < 0.5:
|
285 |
+
return [self.encoder_example(item)]
|
286 |
+
return [self.decoder_example(item)]
|
287 |
+
|
288 |
+
def encoder_example(self, item):
|
289 |
+
example, tokenizer, args = item
|
290 |
+
lines = example.lines
|
291 |
+
labels = example.labels
|
292 |
+
target_ids = [tokenizer.pad_id] * args.max_target_length
|
293 |
+
source_ids, input_labels = [], []
|
294 |
+
for i, (line, label) in enumerate(zip(lines, labels)):
|
295 |
+
if i == example.start_id:
|
296 |
+
source_ids.append(tokenizer.start_id)
|
297 |
+
input_labels.append(-100)
|
298 |
+
if label != -100: # only insert special tokens at diffs, not context
|
299 |
+
source_ids.append(tokenizer.mask_id)
|
300 |
+
input_labels.append(label)
|
301 |
+
source_ids.extend(line)
|
302 |
+
input_labels.extend([-100] * len(line))
|
303 |
+
if i == example.end_id:
|
304 |
+
source_ids.append(tokenizer.end_id)
|
305 |
+
input_labels.append(-100)
|
306 |
+
assert len(input_labels) == len(source_ids), "Not equal length."
|
307 |
+
assert len(input_labels) <= args.max_source_length, f"Too long inputs: {len(input_labels)}."
|
308 |
+
source_ids = source_ids[:args.max_source_length - 2]
|
309 |
+
input_labels = input_labels[:args.max_source_length - 2]
|
310 |
+
source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
|
311 |
+
input_labels = [-100] + input_labels + [-100]
|
312 |
+
pad_len = args.max_source_length - len(source_ids)
|
313 |
+
source_ids += [tokenizer.pad_id] * pad_len
|
314 |
+
input_labels += [-100] * pad_len
|
315 |
+
|
316 |
+
new_input_labels = []
|
317 |
+
map_dict = {0: tokenizer.del_id, 1: tokenizer.add_id, 2: tokenizer.keep_id}
|
318 |
+
for label in input_labels:
|
319 |
+
if label == -100:
|
320 |
+
new_input_labels.append(-100)
|
321 |
+
else:
|
322 |
+
new_input_labels.append(map_dict[label])
|
323 |
+
input_labels = new_input_labels
|
324 |
+
assert len(source_ids) == args.max_source_length, "Not equal length."
|
325 |
+
assert len(input_labels) == args.max_source_length, "Not equal length."
|
326 |
+
return ReviewFeatures(example.idx, source_ids, input_labels, target_ids, type="label")
|
327 |
+
|
328 |
+
def decoder_example(self, item):
|
329 |
+
example, tokenizer, args = item
|
330 |
+
lines = example.lines
|
331 |
+
labels = example.labels
|
332 |
+
|
333 |
+
input_labels = [-100] * args.max_source_length
|
334 |
+
source_ids, target_ids = [], []
|
335 |
+
SPECIAL_ID = 0
|
336 |
+
mask_idxs = random.choices(range(len(lines)), k=int(len(lines) * args.mask_rate))
|
337 |
+
id_dict = {0: tokenizer.del_id, 1: tokenizer.add_id, 2: tokenizer.keep_id}
|
338 |
+
for i, (line, label) in enumerate(zip(lines, labels)):
|
339 |
+
if i == example.start_id:
|
340 |
+
source_ids.append(tokenizer.start_id)
|
341 |
+
if label in id_dict:
|
342 |
+
source_ids.append(id_dict[label])
|
343 |
+
if i in mask_idxs:
|
344 |
+
source_ids.append(tokenizer.special_dict[f"<e{SPECIAL_ID}>"])
|
345 |
+
target_ids.append(tokenizer.special_dict[f"<e{SPECIAL_ID}>"])
|
346 |
+
target_ids.extend(line)
|
347 |
+
if SPECIAL_ID < 99: # only 0-99 ids in vocab
|
348 |
+
SPECIAL_ID += 1
|
349 |
+
else:
|
350 |
+
source_ids.extend(line)
|
351 |
+
if i == example.end_id:
|
352 |
+
source_ids.append(tokenizer.end_id)
|
353 |
+
source_ids, target_ids = self.pad_assert(source_ids, target_ids, args, tokenizer)
|
354 |
+
return ReviewFeatures(example.idx, source_ids, input_labels, target_ids, type="line")
|
355 |
+
|
356 |
+
def genmsg_example(self, item):
|
357 |
+
example, tokenizer, args = item
|
358 |
+
lines = example.lines
|
359 |
+
labels = example.labels
|
360 |
+
input_labels = [-100] * args.max_source_length
|
361 |
+
source_ids, target_ids = [], []
|
362 |
+
id_dict = {0: tokenizer.del_id, 1: tokenizer.add_id, 2: tokenizer.keep_id}
|
363 |
+
for i, (line, label) in enumerate(zip(lines, labels)):
|
364 |
+
if i == example.start_id:
|
365 |
+
source_ids.append(tokenizer.start_id)
|
366 |
+
if label != -100:
|
367 |
+
source_ids.append(id_dict[label])
|
368 |
+
source_ids.extend(line)
|
369 |
+
if i == example.end_id:
|
370 |
+
source_ids.append(tokenizer.end_id)
|
371 |
+
target_ids.append(tokenizer.msg_id)
|
372 |
+
target_ids.extend(example.msg)
|
373 |
+
assert len(source_ids) <= args.max_source_length, f"Too long inputs: {len(source_ids)}."
|
374 |
+
source_ids, target_ids = self.pad_assert(source_ids, target_ids, args, tokenizer)
|
375 |
+
return ReviewFeatures(example.idx, source_ids, input_labels, target_ids, type="genmsg")
|
376 |
+
|
377 |
+
def daemsg_example(self, item):
|
378 |
+
example, tokenizer, args = item
|
379 |
+
input_labels = [-100] * args.max_source_length
|
380 |
+
source_ids, target_ids = [], []
|
381 |
+
msg_ids = cp(example.msg)
|
382 |
+
masks = [random.random() < 0.20 for _ in range(len(msg_ids))]
|
383 |
+
if sum(masks) == 0:
|
384 |
+
idx = random.choice(range(len(msg_ids)))
|
385 |
+
masks[idx] = True
|
386 |
+
source_ids, target_ids = [], []
|
387 |
+
i = 0
|
388 |
+
SPECIAL_ID = 0
|
389 |
+
while i < len(masks):
|
390 |
+
j = i
|
391 |
+
while j < len(masks) and not masks[j]:
|
392 |
+
source_ids.append(msg_ids[j])
|
393 |
+
j += 1
|
394 |
+
if j == len(masks):
|
395 |
+
break
|
396 |
+
source_ids.append(tokenizer.special_dict[f"<e{SPECIAL_ID}>"])
|
397 |
+
target_ids.append(tokenizer.special_dict[f"<e{SPECIAL_ID}>"])
|
398 |
+
while j < len(masks) and masks[j]:
|
399 |
+
target_ids.append(msg_ids[j])
|
400 |
+
j += 1
|
401 |
+
if SPECIAL_ID < 99: # only 0-99 ids in vocab
|
402 |
+
SPECIAL_ID += 1
|
403 |
+
i = j
|
404 |
+
source_ids, target_ids = self.pad_assert(source_ids, target_ids, args, tokenizer)
|
405 |
+
return ReviewFeatures(example.idx, source_ids, input_labels, target_ids, type="daemsg")
|
406 |
+
|
407 |
+
def pad_assert(self, source_ids, target_ids, args, tokenizer):
|
408 |
+
source_ids = source_ids[:args.max_source_length - 2]
|
409 |
+
source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
|
410 |
+
pad_len = args.max_source_length - len(source_ids)
|
411 |
+
source_ids += [tokenizer.pad_id] * pad_len
|
412 |
+
target_ids = target_ids[:args.max_target_length - 1]
|
413 |
+
target_ids = target_ids + [tokenizer.eos_id]
|
414 |
+
pad_len = args.max_target_length - len(target_ids)
|
415 |
+
target_ids += [tokenizer.pad_id] * pad_len
|
416 |
+
assert len(source_ids) == args.max_source_length, "Not equal length."
|
417 |
+
assert len(target_ids) == args.max_target_length, "Not equal length."
|
418 |
+
return source_ids, target_ids
|
419 |
+
|
420 |
+
def encode_remove(self, tokenizer, text, args):
|
421 |
+
text = tokenizer.encode(text, max_length=args.max_source_length, truncation=True)
|
422 |
+
if type(tokenizer) == T5Tokenizer:
|
423 |
+
return text[:-1]
|
424 |
+
elif type(tokenizer) == RobertaTokenizer:
|
425 |
+
return text[1:-1]
|
426 |
+
elif type(tokenizer) == MyTokenizer:
|
427 |
+
return text
|
428 |
+
else:
|
429 |
+
raise NotImplementedError
|
430 |
+
|
431 |
+
|
432 |
+
class CommentGenDataset(TextDataset):
|
433 |
+
def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
|
434 |
+
self.tokenizer = tokenizer
|
435 |
+
if isinstance(tokenizer, MyTokenizer):
|
436 |
+
tokenizer_type = "mytok"
|
437 |
+
elif isinstance(tokenizer, T5Tokenizer):
|
438 |
+
tokenizer_type = ""
|
439 |
+
elif isinstance(tokenizer, RobertaTokenizer):
|
440 |
+
tokenizer_type = "rb"
|
441 |
+
else:
|
442 |
+
tokenizer_type = "unk"
|
443 |
+
savep = file_path.replace(".jsonl", tokenizer_type + ".exps")
|
444 |
+
if os.path.exists(savep):
|
445 |
+
logger.info("Loading examples from {}".format(savep))
|
446 |
+
examples = torch.load(savep)
|
447 |
+
else:
|
448 |
+
logger.info("Reading examples from {}".format(file_path))
|
449 |
+
examples = read_review_examples(file_path, samplenum, tokenizer)
|
450 |
+
# for i in range(len(examples)):
|
451 |
+
# examples[i].msg = " ".join(nltk.word_tokenize(examples[i].msg))
|
452 |
+
logger.info(f"Tokenize examples: {file_path}")
|
453 |
+
examples = pool.map(self.tokenize, \
|
454 |
+
[(example, tokenizer, args) for example in examples])
|
455 |
+
torch.save(examples, savep)
|
456 |
+
logger.info("Convert examples to features...")
|
457 |
+
self.set_start_end_ids(examples)
|
458 |
+
self.feats = pool.map(self.convert_examples_to_features, \
|
459 |
+
[(example, tokenizer, args) for example in examples])
|
460 |
+
self.feats = [feat for feat in self.feats if feat is not None]
|
461 |
+
|
462 |
+
def convert_examples_to_features(self, item):
|
463 |
+
example, tokenizer, args = item
|
464 |
+
if len(example.msg) == 0:
|
465 |
+
return None
|
466 |
+
return self.genmsg_example(item)
|
467 |
+
|
468 |
+
|
469 |
+
class CommentClsDataset(TextDataset):
|
470 |
+
def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
|
471 |
+
self.tokenizer = tokenizer
|
472 |
+
if isinstance(tokenizer, MyTokenizer):
|
473 |
+
tokenizer_type = "mytok"
|
474 |
+
elif isinstance(tokenizer, T5Tokenizer):
|
475 |
+
tokenizer_type = ""
|
476 |
+
elif isinstance(tokenizer, RobertaTokenizer):
|
477 |
+
tokenizer_type = "rb"
|
478 |
+
else:
|
479 |
+
tokenizer_type = "unk"
|
480 |
+
savep = file_path.replace(".jsonl", tokenizer_type + ".exps")
|
481 |
+
if os.path.exists(savep):
|
482 |
+
logger.info("Loading examples from {}".format(savep))
|
483 |
+
examples = torch.load(savep)
|
484 |
+
else:
|
485 |
+
logger.info("Reading examples from {}".format(file_path))
|
486 |
+
examples = read_review_examples(file_path, samplenum, tokenizer)
|
487 |
+
logger.info(f"Tokenize examples: {file_path}")
|
488 |
+
examples = pool.map(self.tokenize, \
|
489 |
+
[(example, tokenizer, args) for example in examples])
|
490 |
+
torch.save(examples, savep)
|
491 |
+
logger.info("Convert examples to features...")
|
492 |
+
self.set_start_end_ids(examples)
|
493 |
+
self.feats = pool.map(self.convert_examples_to_features, \
|
494 |
+
[(example, tokenizer, args) for example in examples])
|
495 |
+
|
496 |
+
def convert_examples_to_features(self, item):
|
497 |
+
example, tokenizer, args = item
|
498 |
+
tmpfeature = self.genmsg_example(item)
|
499 |
+
return ClsFeatures(tmpfeature.example_id, tmpfeature.source_ids, example.y)
|
500 |
+
|
501 |
+
|
502 |
+
class SimpleClsDataset(TextDataset):
|
503 |
+
def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
|
504 |
+
self.tokenizer = tokenizer
|
505 |
+
if isinstance(tokenizer, MyTokenizer):
|
506 |
+
tokenizer_type = "mytok"
|
507 |
+
elif isinstance(tokenizer, T5Tokenizer):
|
508 |
+
tokenizer_type = ""
|
509 |
+
elif isinstance(tokenizer, RobertaTokenizer):
|
510 |
+
tokenizer_type = "rb"
|
511 |
+
else:
|
512 |
+
tokenizer_type = "unk"
|
513 |
+
savep = file_path.replace(".jsonl", tokenizer_type + ".simpexps")
|
514 |
+
if os.path.exists(savep):
|
515 |
+
logger.info("Loading examples from {}".format(savep))
|
516 |
+
self.feats = torch.load(savep)
|
517 |
+
else:
|
518 |
+
logger.info("Reading examples from {}".format(file_path))
|
519 |
+
examples = read_review_examples(file_path, samplenum, tokenizer)
|
520 |
+
logger.info(f"Tokenize examples: {file_path}")
|
521 |
+
self.feats = pool.map(self.convert_examples_to_features, \
|
522 |
+
[(example, tokenizer, args) for example in examples])
|
523 |
+
torch.save(self.feats, savep)
|
524 |
+
|
525 |
+
def convert_examples_to_features(self, item):
|
526 |
+
example, tokenizer, args = item
|
527 |
+
example.input_lines = example.input.split("<e0>")
|
528 |
+
labels_l = len(example.labels)
|
529 |
+
example.input_lines = example.input_lines[:labels_l]
|
530 |
+
for i in range(len(example.input_lines)):
|
531 |
+
if example.labels[i] == 1:
|
532 |
+
example.input_lines[i] = "+ " + example.input_lines[i]
|
533 |
+
elif example.labels[i] == 0:
|
534 |
+
example.input_lines[i] = "- " + example.input_lines[i]
|
535 |
+
example.input = " ".join(example.input_lines)
|
536 |
+
input_ids = self.encode_remove(tokenizer, example.input, args)
|
537 |
+
exceed_l = len(input_ids) - args.max_source_length + 2
|
538 |
+
if exceed_l > 0:
|
539 |
+
halfexl = (exceed_l + 1) // 2
|
540 |
+
input_ids = input_ids[halfexl:-halfexl]
|
541 |
+
source_ids = input_ids[:args.max_source_length - 2]
|
542 |
+
source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
|
543 |
+
pad_len = args.max_source_length - len(source_ids)
|
544 |
+
source_ids += [tokenizer.pad_id] * pad_len
|
545 |
+
example_id = example.idx
|
546 |
+
y = example.y
|
547 |
+
return ClsFeatures(example_id, source_ids, y)
|
548 |
+
|
549 |
+
|
550 |
+
class SimpleGenDataset(TextDataset):
|
551 |
+
def __init__(self, tokenizer, pool, args, file_path, samplenum=-1):
|
552 |
+
self.tokenizer = tokenizer
|
553 |
+
if isinstance(tokenizer, MyTokenizer):
|
554 |
+
tokenizer_type = "mytok"
|
555 |
+
elif isinstance(tokenizer, T5Tokenizer):
|
556 |
+
tokenizer_type = ""
|
557 |
+
elif isinstance(tokenizer, RobertaTokenizer):
|
558 |
+
tokenizer_type = "rb"
|
559 |
+
else:
|
560 |
+
tokenizer_type = "unk"
|
561 |
+
savep = file_path.replace(".jsonl", tokenizer_type + ".simpgenexps")
|
562 |
+
if os.path.exists(savep):
|
563 |
+
logger.info("Loading examples from {}".format(savep))
|
564 |
+
self.feats = torch.load(savep)
|
565 |
+
else:
|
566 |
+
logger.info("Reading examples from {}".format(file_path))
|
567 |
+
data = read_jsonl(file_path)
|
568 |
+
# data = [dic for dic in data if len(dic["patch"].split("\n")) <= 20]
|
569 |
+
for i in range(len(data)):
|
570 |
+
data[i]["idx"] = i
|
571 |
+
logger.info(f"Tokenize examples: {file_path}")
|
572 |
+
# self.feats = pool.map(self.convert_examples_to_features, \
|
573 |
+
# [(dic, tokenizer, args) for dic in data])
|
574 |
+
self.feats = [self.convert_examples_to_features((dic, tokenizer, args)) for dic in data]
|
575 |
+
torch.save(self.feats, savep)
|
576 |
+
|
577 |
+
def convert_examples_to_features(self, item):
|
578 |
+
dic, tokenizer, args = item
|
579 |
+
diff, msg = dic["patch"], dic["msg"]
|
580 |
+
difflines = diff.split("\n")[1:] # remove start @@
|
581 |
+
difflines = [line for line in difflines if len(line.strip()) > 0]
|
582 |
+
map_dic = {"-": 0, "+": 1, " ": 2}
|
583 |
+
def f(s):
|
584 |
+
if s in map_dic:
|
585 |
+
return map_dic[s]
|
586 |
+
else:
|
587 |
+
return 2
|
588 |
+
labels = [f(line[0]) for line in difflines]
|
589 |
+
difflines = [line[1:].strip() for line in difflines]
|
590 |
+
inputstr = ""
|
591 |
+
for label, line in zip(labels, difflines):
|
592 |
+
if label == 1:
|
593 |
+
inputstr += "<add>" + line
|
594 |
+
elif label == 0:
|
595 |
+
inputstr += "<del>" + line
|
596 |
+
else:
|
597 |
+
inputstr += "<keep>" + line
|
598 |
+
source_ids = self.encode_remove(tokenizer, inputstr, args)
|
599 |
+
target_ids = []
|
600 |
+
target_ids.append(tokenizer.msg_id)
|
601 |
+
msg = self.encode_remove(tokenizer, dic["msg"], args)
|
602 |
+
target_ids.extend(msg)
|
603 |
+
source_ids, target_ids = self.pad_assert(source_ids, target_ids, args, tokenizer)
|
604 |
+
input_labels = [-100] * len(source_ids)
|
605 |
+
return ReviewFeatures(dic["idx"], source_ids, input_labels, target_ids, type="genmsg")
|
606 |
+
|
607 |
+
|
608 |
+
class InputFeatures(object):
|
609 |
+
"""A single training/test features for a example."""
|
610 |
+
|
611 |
+
def __init__(self, example_id, source_ids, target_ids, url=None):
|
612 |
+
self.example_id = example_id
|
613 |
+
self.source_ids = source_ids
|
614 |
+
self.target_ids = target_ids
|
615 |
+
self.url = url
|
616 |
+
|
617 |
+
|
618 |
+
class ReviewFeatures(object):
|
619 |
+
def __init__(self, example_id, source_ids, source_labels, target_ids, type):
|
620 |
+
self.example_id = example_id
|
621 |
+
self.source_ids = source_ids
|
622 |
+
self.source_labels = source_labels
|
623 |
+
self.target_ids = target_ids
|
624 |
+
assert type in ("label", "line", "genmsg", "daemsg")
|
625 |
+
self.type = type
|
626 |
+
|
627 |
+
class ClsFeatures(object):
|
628 |
+
def __init__(self, example_id, source_ids, y):
|
629 |
+
self.example_id = example_id
|
630 |
+
self.source_ids = source_ids
|
631 |
+
self.y = y
|
632 |
+
|
633 |
+
class ReviewExample(object):
|
634 |
+
"""A single training/test example."""
|
635 |
+
|
636 |
+
def __init__(
|
637 |
+
self, idx, oldf, diff, msg, cmtid, max_len, y
|
638 |
+
):
|
639 |
+
self.idx = idx # idx is useless yet
|
640 |
+
self.oldf = oldf
|
641 |
+
self.diff = diff
|
642 |
+
self.msg = msg
|
643 |
+
self.cmtid = cmtid
|
644 |
+
self.max_len = max_len
|
645 |
+
self.y = y
|
646 |
+
self.prevlines = []
|
647 |
+
self.afterlines = []
|
648 |
+
self.lines = []
|
649 |
+
self.labels = []
|
650 |
+
self.avail = False
|
651 |
+
self.input = ""
|
652 |
+
self.align_and_clean()
|
653 |
+
self.postprocess()
|
654 |
+
|
655 |
+
def postprocess(self):
|
656 |
+
if not self.avail:
|
657 |
+
return
|
658 |
+
# Warning: lines is not self.lines
|
659 |
+
# lines for rough length estimation
|
660 |
+
lines = [source_str.split() for source_str in self.lines]
|
661 |
+
inputl = len(lines) # line tag
|
662 |
+
inputl += sum(map(len, lines))
|
663 |
+
left, right = 0, len(lines)
|
664 |
+
while inputl > self.max_len:
|
665 |
+
if left % 2 == 0:
|
666 |
+
inputl -= len(lines[left]) + 1
|
667 |
+
left += 1
|
668 |
+
else:
|
669 |
+
right -= 1
|
670 |
+
inputl -= len(lines[right]) + 1
|
671 |
+
lines = lines[left:right]
|
672 |
+
self.lines = self.lines[left:right]
|
673 |
+
self.labels = self.labels[left:right]
|
674 |
+
prevlines = self.prevlines
|
675 |
+
afterlines = self.afterlines
|
676 |
+
prev_after_len = max(len(prevlines), len(afterlines))
|
677 |
+
i = 0
|
678 |
+
while inputl < self.max_len and i < prev_after_len:
|
679 |
+
if i < len(prevlines):
|
680 |
+
newl = inputl + len(prevlines[-1-i].split()) + 1
|
681 |
+
if newl > self.max_len:
|
682 |
+
break
|
683 |
+
self.lines.insert(0, prevlines[-1-i])
|
684 |
+
self.labels.insert(0, -100)
|
685 |
+
inputl = newl # tag
|
686 |
+
if i < len(afterlines):
|
687 |
+
newl = inputl + len(afterlines[i].split()) + 1
|
688 |
+
if newl > self.max_len:
|
689 |
+
break
|
690 |
+
self.lines.append(afterlines[i])
|
691 |
+
self.labels.append(-100)
|
692 |
+
inputl = newl # tag
|
693 |
+
i += 1
|
694 |
+
assert inputl <= self.max_len, "Too long inputs."
|
695 |
+
assert len(self.lines) == len(self.labels), "Not equal length."
|
696 |
+
self.input = "<e0>".join(self.lines)
|
697 |
+
self.prevlines, self.lines, self.afterlines = [], [], []
|
698 |
+
|
699 |
+
def remove_space_clean(self, line):
|
700 |
+
"""
|
701 |
+
Remove start and end empty chars.
|
702 |
+
"""
|
703 |
+
rep = " \t\r"
|
704 |
+
totallen = len(line)
|
705 |
+
i = 0
|
706 |
+
while i < totallen and line[i] in rep:
|
707 |
+
i += 1
|
708 |
+
j = totallen - 1
|
709 |
+
while j >= 0 and line[j] in rep:
|
710 |
+
j -= 1
|
711 |
+
line = line[i : j + 1]
|
712 |
+
return line
|
713 |
+
|
714 |
+
def align_and_clean(self):
|
715 |
+
oldflines = self.oldf.split("\n")
|
716 |
+
difflines = self.diff.split("\n")
|
717 |
+
first_line = difflines[0]
|
718 |
+
difflines = difflines[1:]
|
719 |
+
difflines = [line for line in difflines if line != r""]
|
720 |
+
regex = r"@@ -(\d+),(\d+) \+(\d+),(\d+) @@"
|
721 |
+
matchres = re.match(regex, first_line)
|
722 |
+
if matchres:
|
723 |
+
startline, rangelen, startpos, endpos = matchres.groups()
|
724 |
+
self.avail = True
|
725 |
+
else:
|
726 |
+
self.avail = False
|
727 |
+
return
|
728 |
+
startline, rangelen = int(startline) - 1, int(rangelen)
|
729 |
+
endline = startline + rangelen
|
730 |
+
self.prevlines = oldflines[:startline]
|
731 |
+
self.afterlines = oldflines[endline:]
|
732 |
+
for line in difflines:
|
733 |
+
if line.startswith("-"):
|
734 |
+
self.lines.append(line[1:])
|
735 |
+
self.labels.append(0)
|
736 |
+
elif line.startswith("+"):
|
737 |
+
self.lines.append(line[1:])
|
738 |
+
self.labels.append(1)
|
739 |
+
else:
|
740 |
+
self.lines.append(line)
|
741 |
+
self.labels.append(2)
|
742 |
+
self.prevlines = [self.remove_space_clean(line) for line in self.prevlines]
|
743 |
+
self.afterlines = [self.remove_space_clean(line) for line in self.afterlines]
|
744 |
+
self.lines = [self.remove_space_clean(line) for line in self.lines]
|
745 |
+
self.msg = self.remove_space_clean(self.msg)
|
746 |
+
self.prevlines = [line for line in self.prevlines if len(line) > 0]
|
747 |
+
self.afterlines = [line for line in self.afterlines if len(line) > 0]
|
748 |
+
# print("\n".join(self.prevlines))
|
749 |
+
# print("\n\n\n\n")
|
750 |
+
# print("\n".join(self.lines))
|
751 |
+
# print("\n\n\n\n")
|
752 |
+
# print("\n".join(self.afterlines))
|
753 |
+
# print("\n\n\n\n")
|
754 |
+
assert len(self.lines) == len(self.labels), "Not equal length in align."
|
755 |
+
topack = list(
|
756 |
+
zip(
|
757 |
+
*[
|
758 |
+
(line, label)
|
759 |
+
for line, label in zip(self.lines, self.labels)
|
760 |
+
if len(line) > 0
|
761 |
+
]
|
762 |
+
)
|
763 |
+
)
|
764 |
+
if topack == []:
|
765 |
+
self.avail = False
|
766 |
+
return
|
767 |
+
else:
|
768 |
+
self.lines, self.labels = topack
|
769 |
+
# tuple->list, convenient for later operation
|
770 |
+
self.lines = list(self.lines)
|
771 |
+
self.labels = list(self.labels)
|
772 |
+
|
773 |
+
|
774 |
+
def read_review_examples(filename, data_num=-1, tokenizer=None):
|
775 |
+
"""Read examples from filename."""
|
776 |
+
examples = []
|
777 |
+
idx = 0
|
778 |
+
with open(filename) as f:
|
779 |
+
for line in f:
|
780 |
+
try:
|
781 |
+
js = json.loads(line.strip())
|
782 |
+
except:
|
783 |
+
print("Error during reading json data.")
|
784 |
+
continue
|
785 |
+
maxl = 200
|
786 |
+
if "y" not in js:
|
787 |
+
js["y"] = 0
|
788 |
+
if "msg" in js and len(js["msg"]) > 0:
|
789 |
+
js["y"] = 1
|
790 |
+
example = ReviewExample(
|
791 |
+
idx=idx,
|
792 |
+
oldf=js["oldf"],
|
793 |
+
diff=js["patch"],
|
794 |
+
msg=js["msg"] if "msg" in js else "",
|
795 |
+
cmtid=js["cmtid"] if "cmtid" in js else "",
|
796 |
+
max_len=maxl,
|
797 |
+
y=js["y"]
|
798 |
+
)
|
799 |
+
if example.avail:
|
800 |
+
examples.append(example)
|
801 |
+
idx += 1
|
802 |
+
if idx == data_num:
|
803 |
+
break
|
804 |
+
else:
|
805 |
+
# print(f"Passing {idx} because of invalid diff.")
|
806 |
+
idx += 1
|
807 |
+
if idx == data_num:
|
808 |
+
break
|
809 |
+
|
810 |
+
return examples
|
811 |
+
|
812 |
+
|
813 |
+
def read_jsonl(path):
|
814 |
+
data = []
|
815 |
+
with open(path) as f:
|
816 |
+
for line in f:
|
817 |
+
try:
|
818 |
+
js = json.loads(line.strip())
|
819 |
+
except:
|
820 |
+
print("Error during reading json data.")
|
821 |
+
continue
|
822 |
+
data.append(js)
|
823 |
+
return data
|