shekkari21 commited on
Commit
204586a
·
1 Parent(s): b3c8f69

made few changes

Browse files
__pycache__/app.cpython-39.pyc ADDED
Binary file (5.16 kB). View file
 
__pycache__/configs.cpython-39.pyc CHANGED
Binary files a/__pycache__/configs.cpython-39.pyc and b/__pycache__/configs.cpython-39.pyc differ
 
__pycache__/models.cpython-39.pyc CHANGED
Binary files a/__pycache__/models.cpython-39.pyc and b/__pycache__/models.cpython-39.pyc differ
 
__pycache__/utils.cpython-39.pyc CHANGED
Binary files a/__pycache__/utils.cpython-39.pyc and b/__pycache__/utils.cpython-39.pyc differ
 
app.py CHANGED
@@ -3,6 +3,7 @@ from fastapi.responses import HTMLResponse, RedirectResponse, JSONResponse
3
  from pydantic import BaseModel
4
  from typing import List
5
  import os # ← add this
 
6
  from clearml import Model, Task
7
  import torch
8
  from configs import add_args
@@ -11,6 +12,9 @@ import argparse
11
  from argparse import Namespace
12
  from peft import PeftModel, PeftConfig, get_peft_model, LoraConfig
13
 
 
 
 
14
  # Load endpoints & creds
15
  CLEARML_API_HOST = os.environ["CLEARML_API_HOST"]
16
  CLEARML_WEB_HOST = os.environ["CLEARML_WEB_HOST"]
@@ -66,8 +70,7 @@ print("Base model architecture and tokenizer loaded.")
66
  # Download the fine-tuned weights via ClearML using your injected creds
67
  task = Task.get_task(task_id="9cc33fb4d1d54378b691188c5e230253")
68
  finetuned_weights_path = task.artifacts["lora-pytorch-bin"].get_local_copy()
69
- adapter_dir = os.path.dirname(finetuned_weights_path)
70
- print(f"Fine-tuned adapter weights downloaded to directory: {adapter_dir}")
71
 
72
  # Create LoRA configuration matching the fine-tuned checkpoint
73
  lora_cfg = LoraConfig(
 
3
  from pydantic import BaseModel
4
  from typing import List
5
  import os # ← add this
6
+
7
  from clearml import Model, Task
8
  import torch
9
  from configs import add_args
 
12
  from argparse import Namespace
13
  from peft import PeftModel, PeftConfig, get_peft_model, LoraConfig
14
 
15
+ # maximum token length for inputs
16
+ MAX_SOURCE_LENGTH = 512
17
+
18
  # Load endpoints & creds
19
  CLEARML_API_HOST = os.environ["CLEARML_API_HOST"]
20
  CLEARML_WEB_HOST = os.environ["CLEARML_WEB_HOST"]
 
70
  # Download the fine-tuned weights via ClearML using your injected creds
71
  task = Task.get_task(task_id="9cc33fb4d1d54378b691188c5e230253")
72
  finetuned_weights_path = task.artifacts["lora-pytorch-bin"].get_local_copy()
73
+ print(f"Fine-tuned adapter weights downloaded to directory: {os.path.dirname(finetuned_weights_path)}")
 
74
 
75
  # Create LoRA configuration matching the fine-tuned checkpoint
76
  lora_cfg = LoraConfig(