|
import spaces |
|
import gradio as gr |
|
import json |
|
import torch |
|
import wavio |
|
from tqdm import tqdm |
|
from huggingface_hub import snapshot_download |
|
from models import AudioDiffusion, DDPMScheduler |
|
from audioldm.audio.stft import TacotronSTFT |
|
from audioldm.variational_autoencoder import AutoencoderKL |
|
from pydub import AudioSegment |
|
from gradio import Markdown |
|
|
|
import torch |
|
|
|
from diffusers import DiffusionPipeline,AudioPipelineOutput |
|
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast |
|
from typing import Union |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from tqdm import tqdm |
|
from TangoFlux import TangoFluxInference |
|
|
|
|
|
|
|
tangoflux = TangoFluxInference(path="declare-lab/TangoFlux") |
|
|
|
|
|
|
|
@spaces.GPU(duration=15) |
|
def gradio_generate(prompt, output_format, steps, guidance,duration=10): |
|
|
|
output_wave = tangoflux.generate(prompt,steps=steps,guidance=guidance,duration=duration) |
|
output_wave = pipe(prompt,steps,guidance) |
|
|
|
|
|
output_wave = output_wave.audios[0] |
|
output_filename = "temp.wav" |
|
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) |
|
|
|
if (output_format == "mp3"): |
|
AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3") |
|
output_filename = "temp.mp3" |
|
|
|
return output_filename |
|
|
|
description_text = """ |
|
<p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/> |
|
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a> |
|
<br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a> |
|
<p/> |
|
""" |
|
|
|
input_text = gr.Textbox(lines=2, label="Prompt") |
|
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav") |
|
output_audio = gr.Audio(label="Generated Audio", type="filepath") |
|
denoising_steps = gr.Slider(minimum=10, maximum=100, value=25, step=1, label="Steps", interactive=True) |
|
guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True) |
|
duration_scale = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Duration", interactive=True) |
|
|
|
|
|
gr_interface = gr.Interface( |
|
fn=gradio_generate, |
|
inputs=[input_text, output_format, denoising_steps, guidance_scale,duration_scale], |
|
outputs=[output_audio], |
|
title="TangoFlux: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization", |
|
description=description_text, |
|
allow_flagging=False, |
|
examples=[ |
|
["Quiet speech and then and airplane flying away"], |
|
["A bicycle peddling on dirt and gravel followed by a man speaking then laughing"], |
|
["Ducks quack and water splashes with some animal screeching in the background"], |
|
["Describe the sound of the ocean"], |
|
["A woman and a baby are having a conversation"], |
|
["A man speaks followed by a popping noise and laughter"], |
|
["A cup is filled from a faucet"], |
|
["An audience cheering and clapping"], |
|
["Rolling thunder with lightning strikes"], |
|
["A dog barking and a cat mewing and a racing car passes by"], |
|
["Gentle water stream, birds chirping and sudden gun shot"], |
|
["A man talking followed by a goat baaing then a metal gate sliding shut as ducks quack and wind blows into a microphone."], |
|
["A dog barking"], |
|
["A cat meowing"], |
|
["Wooden table tapping sound while water pouring"], |
|
["Applause from a crowd with distant clicking and a man speaking over a loudspeaker"], |
|
["two gunshots followed by birds flying away while chirping"], |
|
["Whistling with birds chirping"], |
|
["A person snoring"], |
|
["Motor vehicles are driving with loud engines and a person whistles"], |
|
["People cheering in a stadium while thunder and lightning strikes"], |
|
["A helicopter is in flight"], |
|
["A dog barking and a man talking and a racing car passes by"], |
|
], |
|
cache_examples="lazy", |
|
) |
|
|
|
|
|
gr_interface.queue(10).launch() |