sergiosampayob
Sentiment analysis demo
f08f4c2
raw
history blame
845 Bytes
import gradio as gr
import torch
from transformers import pipeline
pipe = pipeline("text-classification", # tarea a realizar
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english", # modelo a utilizar
torch_dtype=torch.bfloat16,) #
def text_classification(text):
result = pipe(text)
return result[0]['label']
examples = ['You are the evil!', 'Doing great boy!']
demo = gr.Interface(fn=text_classification,
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter text here..."),
outputs=gr.Textbox(lines=2, label="Text Classification Result"),
description="Enter a text and see the sentiment classification result!",
examples=examples,
title="Sentiment Classification")
demo.launch()