|
import gradio as gr |
|
import torch |
|
from transformers import pipeline |
|
|
|
|
|
pipe = pipeline("text-classification", |
|
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english", |
|
torch_dtype=torch.bfloat16,) |
|
|
|
|
|
def text_classification(text): |
|
result = pipe(text) |
|
return result[0]['label'] |
|
|
|
|
|
examples = ['You are the evil!', 'Doing great boy!'] |
|
|
|
demo = gr.Interface(fn=text_classification, |
|
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter text here..."), |
|
outputs=gr.Textbox(lines=2, label="Text Classification Result"), |
|
description="Enter a text and see the sentiment classification result!", |
|
examples=examples, |
|
title="Sentiment Classification") |
|
|
|
demo.launch() |
|
|