import os import subprocess import torch import gradio as gr from huggingface_hub import InferenceClient from vllm.config import DeviceConfig from vllm import LLM from sal.models.reward_models import RLHFFlow if not os.path.exists("search-and-learn"): subprocess.run(["git", "clone", "https://github.com/huggingface/search-and-learn"]) subprocess.run(["pip", "install", "-e", "./search-and-learn[dev]"]) device_config = DeviceConfig(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')) print('device_config', device_config) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('device', device) model_path = "meta-llama/Llama-3.2-1B-Instruct" prm_path = "RLHFlow/Llama3.1-8B-PRM-Deepseek-Data" llm = LLM( model=model_path, gpu_memory_utilization=0.5, # Utilize 50% of GPU memory enable_prefix_caching=True, # Optimize repeated prefix computations seed=42, # Set seed for reproducibility ) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()