from mtcnn.mtcnn import MTCNN
from utils import *
cloth_examples = get_cloth_examples()
pose_examples = get_pose_examples()
tip1, tip2 = get_tips()
face_detector = MTCNN()
# Description
title = r"""
Outfit Anyone in the Wild: Get rid of Annoying Restrictions for Virtual Try-on Task
"""
description = r"""
Go to HeyBeauty for Faster and Free Try-On! 🤗 .
Official 🤗 Gradio demo for Outfit Anyone in the Wild: Get rid of Annoying Restrictions for Virtual Try-on Task.
1. Clothing models are fixed in this demo, but you can create your own in our WeChat applet (for Chainese users).
2. You can upload your own pose photo, then click the run button and wait for 3~5 minutes to see the results.
3. After submitting the task, feel free to leave this page. Everytime you refresh this page, completed tasks will be displayed on the history tab (bind with your ip address).
4. Share your try-on photo with your friends and enjoy! 😊.
Test results on man01.
Test results on woman01.
Test results on woman02.
"""
css = """
.gradio-container {width: 85% !important}
"""
mk_guide = "If image does not display successfully after button clicked in your browser(mostly Mac+Chrome), try [this demo](https://openxlab.org.cn/apps/detail/jiangxiaoguo/OutfitAnyone-in-the-Wild) please"
def onUpload():
return ""
def onClick(cloth_id, pose_image, pose_id, size, request: gr.Request):
if pose_image is None:
return None, "no pose image found !", ""
# pose_id, cloth_id = pose_id['label'], cloth_id['label']
# print(pose_id, cloth_id, size, (pose_image is None), len(pose_id)>0)
if len(pose_id)>0:
res = get_result_example(cloth_id, pose_id)
# print(res)
assert os.path.exists(res), res
# res = cv2.imread(res)
return res, "Done! Use the pre-run results directly, the cloth size does not take effect ", mk_guide
else:
try:
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
faces = face_detector.detect_faces(pose_image[:,:,::-1])
if len(faces)==0:
print(client_ip, 'faces num is 0! ', flush=True)
return None, "Fatal Error !!! No face detected !!! You must upload a human photo!!! Not clothing photo!!!", ""
else:
x, y, w, h = faces[0]["box"]
H, W = pose_image.shape[:2]
max_face_ratio = 1/3.3
if w/W>max_face_ratio or h/H>max_face_ratio:
return None, "Fatal Error !!! Headshot is not allowed !!! You must upload a full-body or half-body photo!!!", ""
if not check_region_warp(client_ip):
return None, "Failed !!! Our server is under maintenance, please try again later", ""
timeId = int( str(time.time()).replace(".", "") )+random.randint(1000, 9999)
isUpload = upload_pose_img(ApiUrl, OpenId, ApiKey, client_ip, timeId, pose_image)
if isUpload==0:
return None, "fail to upload", ""
elif isUpload==-1:
return None, "There is a running task already, please wait and check the history tab. Please remember to give us a star on github, thx~", ""
elif isUpload==-2:
return None, "can not creat task, you have exhausted free trial quota", ""
taskId = publicClothSwap(ApiUrl, OpenId, ApiKey, client_ip, cloth_id, timeId, size)
if taskId==0:
return None, "fail to public you task", ""
max_try = 1
wait_s = 30
for i in range(max_try):
time.sleep(wait_s)
state = getInfRes(ApiUrl, OpenId, ApiKey, client_ip, timeId)
if state=='stateIs-1':
return None, "task failed, it may be that no human was detected, or there may be illegal content, etc. ", ""
elif state=='stateIs0':
return None, "task not public success", ""
elif len(state)>20:
return state, "task finished", ""
elif (not state.startswith('stateIs')):
# return None, 'task is in queue, position is '+str(state)
pass
else:
return None, state, ""
return None, "task has been created successfully, you can refresh the page 5~15 mins latter, and check the following history tab", ""
except Exception as e:
print(e)
return None, "fail to create task", ""
def onLoad(request: gr.Request):
client_ip = request.client.host
x_forwarded_for = dict(request.headers).get('x-forwarded-for')
if x_forwarded_for:
client_ip = x_forwarded_for
his_datas = [None for _ in range(10)]
info = ''
try:
infs = getAllInfs(ApiUrl, OpenId, ApiKey, client_ip)
print(client_ip, 'history infs: ', len(infs))
cnt = 0
finish_n, fail_n, queue_n = 0, 0, 0
for i, inf in enumerate(infs):
if inf['state']==2:
if cnt>4: continue
pose, res = inf['pose'], inf['res']
his_datas[cnt*2] = f""
his_datas[cnt*2+1] = f""
finish_n += 1
cnt += 1
elif inf['state'] in [-1, -2, 0]:
fail_n += 1
elif inf['state'] in [1]:
queue_n += 1
info = f"{client_ip}, you have {finish_n} successed tasks, {queue_n} running tasks, {fail_n} failed tasks."
if fail_n>0:
info = info+" Please upload a half/full-body human image, not just a clothing image!!!"
if queue_n>0:
info = info+" Wait for 3~10 mins and refresh this page, successed results will display in the history tab at the bottom"
info = info + "Go to heybeauty for better virtual try-on ! https://heybeauty.ai/extension"
time.sleep(3)
except Exception as e:
print(e)
his_datas = his_datas + [info]
return his_datas
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Accordion('upload tips', open=False):
with gr.Row():
gr.HTML(f"")
gr.HTML(f"")
with gr.Row():
with gr.Column():
with gr.Column():
# cloth_image = gr.Image(type="numpy", value=cloth_examples[0][1], label="")
cloth_image = gr.Image(sources='clipboard', type="filepath", label="",
value=None)
cloth_id = gr.Label(value=cloth_examples[0][0], label="Clothing 3D Model", visible=False)
example = gr.Examples(inputs=[cloth_id, cloth_image],
examples_per_page=3,
examples = cloth_examples)
with gr.Column():
with gr.Column():
# pose_image = gr.Image(source='upload', value=pose_examples[0][1],
# type="numpy", label="")
pose_image = gr.Image(value=None, type="numpy", label="")
pose_id = gr.Label(value=pose_examples[0][0], label="Pose Image", visible=False)
example_pose = gr.Examples(inputs=[pose_id, pose_image],
examples_per_page=3,
examples=pose_examples)
with gr.Column():
with gr.Column():
size_slider = gr.Slider(-2.5, 2.5, value=1, interactive=True, label="clothes size")
info_text = gr.Textbox(value="", interactive=False,
label='runtime information')
run_button = gr.Button(value="Run")
init_res = get_result_example(cloth_examples[0][0], pose_examples[0][0])
res_image = gr.Image(label="result image", value=None, type="filepath")
# res_image = gr.Image(label="result image", value=None, type="numpy")
# res_image = gr.Image(label="result image", value=cv2.imread(init_res),
# type="numpy")
MK01 = gr.Markdown()
with gr.Tab('history'):
with gr.Row():
MK02 = gr.Markdown()
with gr.Row():
his_pose_image1 = gr.HTML()
his_res_image1 = gr.HTML()
with gr.Row():
his_pose_image2 = gr.HTML()
his_res_image2 = gr.HTML()
with gr.Row():
his_pose_image3 = gr.HTML()
his_res_image3 = gr.HTML()
with gr.Row():
his_pose_image4 = gr.HTML()
his_res_image4 = gr.HTML()
with gr.Row():
his_pose_image5 = gr.HTML()
his_res_image5 = gr.HTML()
run_button.click(fn=onClick, inputs=[cloth_id, pose_image, pose_id, size_slider],
outputs=[res_image, info_text, MK01], concurrency_limit=50)
pose_image.upload(fn=onUpload, inputs=[], outputs=[pose_id],)
demo.load(onLoad, inputs=[], outputs=[his_pose_image1, his_res_image1,
his_pose_image2, his_res_image2, his_pose_image3, his_res_image3,
his_pose_image4, his_res_image4, his_pose_image5, his_res_image5,
MK02])
if __name__ == "__main__":
demo.queue(max_size=50)
# demo.queue(concurrency_count=60)
# demo.launch(server_name='0.0.0.0', server_port=225)
demo.launch(server_name='0.0.0.0')