import gradio as gr from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor import torch import re # 모델 로드 및 전처리 설정 model = PaliGemmaForConditionalGeneration.from_pretrained("gokaygokay/sd3-long-captioner").to("cpu").eval() processor = PaliGemmaProcessor.from_pretrained("gokaygokay/sd3-long-captioner") def modify_caption(caption: str) -> str: prefix_substrings = [ ('captured from ', ''), ('captured at ', '') ] pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) replacers = {opening: replacer for opening, replacer in prefix_substrings} def replace_fn(match): return replacers[match.group(0)] return re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) def create_captions_rich(image): prompt = "caption en" image_tensor = processor(images=image, return_tensors="pt").pixel_values.to("cpu") image_tensor = (image_tensor * 255).type(torch.uint8) model_inputs = processor(text=prompt, images=image_tensor, return_tensors="pt").to("cpu") input_len = model_inputs["input_ids"].shape[-1] with torch.no_grad(): generation = model.generate(**model_inputs, max_new_tokens=256, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) modified_caption = modify_caption(decoded) return modified_caption css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.HTML("