import discord import logging import os from huggingface_hub import InferenceClient import asyncio import subprocess from datasets import load_dataset # 로깅 설정 logging.basicConfig(level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(name)s: %(message)s', handlers=[logging.StreamHandler()]) # 인텐트 설정 intents = discord.Intents.default() intents.message_content = True intents.messages = True intents.guilds = True intents.guild_messages = True # 데이터셋 로드 data_files = ['train_0.csv', 'train_1.csv', 'train_2.csv', 'train_3.csv', 'train_4.csv', 'train_5.csv'] law_dataset = load_dataset('csv', data_files=data_files) # 추론 API 클라이언트 설정 hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus", token=os.getenv("HF_TOKEN")) # 특정 채널 ID SPECIFIC_CHANNEL_ID = int(os.getenv("DISCORD_CHANNEL_ID")) # 대화 히스토리를 저장할 전역 변수 conversation_history = [] class MyClient(discord.Client): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_processing = False async def on_ready(self): logging.info(f'{self.user}로 로그인되었습니다!') subprocess.Popen(["python", "web.py"]) logging.info("Web.py server has been started.") async def on_message(self, message): if message.author == self.user: return if not self.is_message_in_specific_channel(message): return if self.is_processing: return self.is_processing = True try: response = await self.generate_response(message) await message.channel.send(response) finally: self.is_processing = False def is_message_in_specific_channel(self, message): return message.channel.id == SPECIFIC_CHANNEL_ID or ( isinstance(message.channel, discord.Thread) and message.channel.parent_id == SPECIFIC_CHANNEL_ID ) async def generate_response(self, message): global conversation_history user_input = message.content user_mention = message.author.mention system_message = f"{user_mention}, DISCORD에서 사용자들의 질문에 답하는 어시스턴트입니다." answer = self.search_in_dataset(user_input, law_dataset) full_response_text = system_message + "\n\n" + answer if not full_response_text.strip(): full_response_text = "죄송합니다, 정보를 제공할 수 없습니다." max_length = 2000 if len(full_response_text) > max_length: for i in range(0, len(full_response_text), max_length): part_response = full_response_text[i:i+max_length] await message.channel.send(part_response) else: await message.channel.send(full_response_text) logging.debug(f'Full model response sent: {full_response_text}') conversation_history.append({"role": "assistant", "content": full_response_text}) def search_in_dataset(self, query, dataset): # 사용자의 쿼리와 관련된 사건명을 찾아 사건번호를 반환합니다. response = [] for record in dataset['train']: # 사건명 필드가 None이 아닐 때만 검사를 수행 if record['사건명'] and query in record['사건명']: detail = f"사건번호: {record['사건번호']}" response.append(detail) return "\n".join(response) if response else "관련 법률 정보를 찾을 수 없습니다." if __name__ == "__main__": discord_client = MyClient(intents=intents) discord_client.run(os.getenv('DISCORD_TOKEN'))