import discord import logging import os from huggingface_hub import InferenceClient import asyncio import subprocess from datasets import load_dataset # 현재 작업 디렉토리 출력 print("Current Working Directory:", os.getcwd()) # 데이터셋 파일 이름 data_file = 'train_0.csv' # 현재 작업 디렉토리에 파일이 있는지 확인 if os.path.exists(data_file): print(f"File {data_file} exists in the current directory.") else: print(f"File {data_file} does not exist in the current directory.") # 작업 디렉토리 변경 (필요한 경우) os.chdir('/home/user/app') print("Changed directory to:", os.getcwd()) # 데이터셋 로드 law_dataset = load_dataset('csv', data_files=data_file) print("Dataset loaded successfully.") # 로깅 설정 logging.basicConfig(level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(name)s: %(message)s', handlers=[logging.StreamHandler()]) # 인텐트 설정 intents = discord.Intents.default() intents.message_content = True intents.messages = True intents.guilds = True intents.guild_messages = True # 추론 API 클라이언트 설정 hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus", token=os.getenv("HF_TOKEN")) # 특정 채널 ID SPECIFIC_CHANNEL_ID = int(os.getenv("DISCORD_CHANNEL_ID")) # 대화 히스토리를 저장할 전역 변수 conversation_history = [] # 법률 데이터셋 로드 law_dataset = load_dataset('csv', data_files='train_0.csv') class MyClient(discord.Client): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_processing = False async def on_ready(self): logging.info(f'{self.user}로 로그인되었습니다!') subprocess.Popen(["python", "web.py"]) logging.info("Web.py server has been started.") async def on_message(self, message): if message.author == self.user: return if not self.is_message_in_specific_channel(message): return if self.is_processing: return self.is_processing = True try: response = await generate_response(message) # 비어 있는 응답을 확인하고 처리 if response.strip() == "": response = "죄송합니다, 제공할 수 있는 정보가 없습니다." await message.channel.send(response) finally: self.is_processing = False def is_message_in_specific_channel(self, message): return message.channel.id == SPECIFIC_CHANNEL_ID or ( isinstance(message.channel, discord.Thread) and message.channel.parent_id == SPECIFIC_CHANNEL_ID ) async def generate_response(message): global conversation_history user_input = message.content user_mention = message.author.mention system_message = f"{user_mention}, DISCORD에서 사용자들의 질문에 답하는 어시스턴트입니다." # 데이터 검색 및 응답 준비 answer = search_in_dataset(user_input, law_dataset) full_response_text = system_message + "\n\n" + answer # 응답 분할 전송 max_length = 2000 if len(full_response_text) > max_length: # 너무 긴 메시지를 여러 부분으로 나누어 보냅니다. for i in range(0, len(full_response_text), max_length): part_response = full_response_text[i:i+max_length] await message.channel.send(part_response) else: # 메시지 길이가 적절하면 한 번에 전송 await message.channel.send(full_response_text) logging.debug(f'Full model response sent: {full_response_text}') conversation_history.append({"role": "assistant", "content": full_response_text}) def search_in_dataset(query, dataset): # 간단한 검색 로직을 구현합니다. # 여기에서는 예제로 단순화하기 위해 첫 번째 항목을 반환합니다. for record in dataset['train']: if query in record['사건명']: return record['사건번호'] return "관련 법률 정보를 찾을 수 없습니다." if __name__ == "__main__": discord_client = MyClient(intents=intents) discord_client.run(os.getenv('DISCORD_TOKEN'))