|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import spaces |
|
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler |
|
from diffusers.utils import load_image |
|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
import gradio as gr |
|
from torchvision import transforms |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"briaai/BRIA-2.2-ControlNet-Canny", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"briaai/BRIA-2.2", |
|
controlnet=controlnet, |
|
torch_dtype=torch.float16, |
|
device_map='auto', |
|
low_cpu_mem_usage=True, |
|
offload_state_dict=True, |
|
) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
steps_offset=1 |
|
) |
|
|
|
|
|
pipe.force_zeros_for_empty_prompt = False |
|
pipe.to('cuda') |
|
low_threshold = 100 |
|
high_threshold = 200 |
|
|
|
def resize_image(image): |
|
image = image.convert('RGB') |
|
current_size = image.size |
|
if current_size[0] > current_size[1]: |
|
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) |
|
else: |
|
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) |
|
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) |
|
return resized_image |
|
|
|
def get_canny_filter(image): |
|
|
|
if not isinstance(image, np.ndarray): |
|
image = np.array(image) |
|
|
|
image = cv2.Canny(image, low_threshold, high_threshold) |
|
image = image[:, :, None] |
|
image = np.concatenate([image, image, image], axis=2) |
|
canny_image = Image.fromarray(image) |
|
return canny_image |
|
|
|
@spaces.GPU |
|
def generate_(prompt, negative_prompt, canny_image, num_steps, controlnet_conditioning_scale, seed): |
|
generator = torch.Generator("cuda").manual_seed(seed) |
|
images = pipe( |
|
prompt, negative_prompt=negative_prompt, image=canny_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), |
|
generator=generator, |
|
).images |
|
return images |
|
|
|
@spaces.GPU |
|
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): |
|
|
|
|
|
input_image = resize_image(input_image) |
|
|
|
canny_image = get_canny_filter(input_image) |
|
|
|
images = generate_(prompt, negative_prompt, canny_image, num_steps, controlnet_conditioning_scale, seed) |
|
|
|
return [canny_image,images[0]] |
|
|
|
|
|
|
|
block = gr.Blocks().queue() |
|
|
|
with block: |
|
gr.Markdown("## BRIA 2.2 ControlNet Canny") |
|
gr.HTML(''' |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
This is a demo for ControlNet Canny that using |
|
<a href="https://huggingface.co/briaai/BRIA-2.2" target="_blank">BRIA 2.2 text-to-image model</a> as backbone. |
|
Trained on licensed data, BRIA 2.2 provide full legal liability coverage for copyright and privacy infringement. |
|
</p> |
|
''') |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(sources=None, type="pil") |
|
prompt = gr.Textbox(label="Prompt") |
|
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") |
|
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1) |
|
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) |
|
run_button = gr.Button(value="Run") |
|
|
|
|
|
with gr.Column(): |
|
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto') |
|
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] |
|
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) |
|
|
|
block.launch(debug = True) |