# First stage: build dependencies FROM public.ecr.aws/docker/library/python:3.11.9-slim-bookworm # Install Lambda web adapter in case you want to run with with an AWS Lamba function URL COPY --from=public.ecr.aws/awsguru/aws-lambda-adapter:0.8.3 /lambda-adapter /opt/extensions/lambda-adapter # Install wget and curl RUN apt-get update && apt-get install -y \ wget \ curl # Create a directory for the model RUN mkdir /model WORKDIR /src COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt # Gradio needs to be installed after due to conflict with spacy in requirements RUN pip install --no-cache-dir gradio==4.36.1 # Download the quantised phi model directly with curl RUN curl -L -o Phi-3-mini-128k-instruct.Q4_K_M.gguf https://huggingface.co/QuantFactory/Phi-3-mini-128k-instruct-GGUF/tree/main/Phi-3-mini-128k-instruct.Q4_K_M.gguf # If needed, move the file to your desired directory in the Docker image RUN mv Phi-3-mini-128k-instruct.Q4_K_M.gguf /model/rep/ # Download the Mixed bread embedding model during the build process RUN curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash RUN apt-get install git-lfs -y RUN git lfs install RUN git clone https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1 /model/embed RUN rm -rf /model/embed/.git # Set up a new user named "user" with user ID 1000 RUN useradd -m -u 1000 user # Change ownership of /home/user directory RUN chown -R user:user /home/user # Make output folder RUN mkdir -p /home/user/app/output && chown -R user:user /home/user/app/output RUN mkdir -p /home/user/.cache/huggingface/hub && chown -R user:user /home/user/.cache/huggingface/hub RUN mkdir -p /home/user/.cache/matplotlib && chown -R user:user /home/user/.cache/matplotlib # Switch to the "user" user USER user # Set home to the user's home directory ENV HOME=/home/user \ PATH=/home/user/.local/bin:$PATH \ PYTHONPATH=$HOME/app \ PYTHONUNBUFFERED=1 \ GRADIO_ALLOW_FLAGGING=never \ GRADIO_NUM_PORTS=1 \ GRADIO_SERVER_NAME=0.0.0.0 \ GRADIO_SERVER_PORT=7860 \ GRADIO_THEME=huggingface \ AWS_STS_REGIONAL_ENDPOINT=regional \ GRADIO_OUTPUT_FOLDER='output/' \ #GRADIO_ROOT_PATH=/data-text-search \ SYSTEM=spaces # Set the working directory to the user's home directory WORKDIR $HOME/app # Copy the current directory contents into the container at $HOME/app setting the owner to the user COPY --chown=user . $HOME/app #COPY . $HOME/app CMD ["python", "app.py"]