import time import re import json import io import os import boto3 import copy from tqdm import tqdm from PIL import Image, ImageChops, ImageFile, ImageDraw ImageFile.LOAD_TRUNCATED_IMAGES = True from typing import List, Dict, Tuple import pandas as pd #from presidio_image_redactor.entities import ImageRecognizerResult from pdfminer.high_level import extract_pages from pdfminer.layout import LTTextContainer, LTChar, LTTextLine, LTTextLineHorizontal, LTAnno from pikepdf import Pdf, Dictionary, Name import pymupdf from pymupdf import Rect from fitz import Page import gradio as gr from gradio import Progress from collections import defaultdict # For efficient grouping from presidio_analyzer import RecognizerResult from tools.aws_functions import RUN_AWS_FUNCTIONS from tools.custom_image_analyser_engine import CustomImageAnalyzerEngine, OCRResult, combine_ocr_results, CustomImageRecognizerResult, run_page_text_redaction, merge_text_bounding_boxes from tools.file_conversion import process_file, image_dpi, convert_review_json_to_pandas_df, redact_whole_pymupdf_page, redact_single_box, convert_pymupdf_to_image_coords from tools.load_spacy_model_custom_recognisers import nlp_analyser, score_threshold, custom_entities, custom_recogniser, custom_word_list_recogniser, CustomWordFuzzyRecognizer from tools.helper_functions import get_file_name_without_type, output_folder, clean_unicode_text, get_or_create_env_var, tesseract_ocr_option, text_ocr_option, textract_option, local_pii_detector, aws_pii_detector from tools.file_conversion import process_file, is_pdf, is_pdf_or_image from tools.aws_textract import analyse_page_with_textract, json_to_ocrresult from tools.presidio_analyzer_custom import recognizer_result_from_dict # Number of pages to loop through before breaking. Currently set very high, as functions are breaking on time metrics (e.g. every 105 seconds), rather than on number of pages redacted. page_break_value = get_or_create_env_var('page_break_value', '50000') print(f'The value of page_break_value is {page_break_value}') max_time_value = get_or_create_env_var('max_time_value', '999999') print(f'The value of max_time_value is {max_time_value}') def bounding_boxes_overlap(box1, box2): """Check if two bounding boxes overlap.""" return (box1[0] < box2[2] and box2[0] < box1[2] and box1[1] < box2[3] and box2[1] < box1[3]) def sum_numbers_before_seconds(string:str): """Extracts numbers that precede the word 'seconds' from a string and adds them up. Args: string: The input string. Returns: The sum of all numbers before 'seconds' in the string. """ # Extract numbers before 'seconds' using regular expression numbers = re.findall(r'(\d+\.\d+)?\s*seconds', string) # Extract the numbers from the matches numbers = [float(num.split()[0]) for num in numbers] # Sum up the extracted numbers sum_of_numbers = round(sum(numbers),1) return sum_of_numbers def choose_and_run_redactor(file_paths:List[str], prepared_pdf_file_paths:List[str], prepared_pdf_image_paths:List[str], language:str, chosen_redact_entities:List[str], chosen_redact_comprehend_entities:List[str], in_redact_method:str, in_allow_list:List[List[str]]=None, custom_recogniser_word_list:List[str]=None, redact_whole_page_list:List[str]=None, latest_file_completed:int=0, out_message:list=[], out_file_paths:list=[], log_files_output_paths:list=[], first_loop_state:bool=False, page_min:int=0, page_max:int=999, estimated_time_taken_state:float=0.0, handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"], all_request_metadata_str:str = "", annotations_all_pages:dict={}, all_line_level_ocr_results_df=[], all_decision_process_table=[], pymupdf_doc=[], current_loop_page:int=0, page_break_return:bool=False, pii_identification_method:str="Local", comprehend_query_number:int=0, max_fuzzy_spelling_mistakes_num:int=1, match_fuzzy_whole_phrase_bool:bool=True, output_folder:str=output_folder, progress=gr.Progress(track_tqdm=True)): ''' This function orchestrates the redaction process based on the specified method and parameters. It takes the following inputs: - file_paths (List[str]): A list of paths to the files to be redacted. - prepared_pdf_file_paths (List[str]): A list of paths to the PDF files prepared for redaction. - prepared_pdf_image_paths (List[str]): A list of paths to the PDF files converted to images for redaction. - language (str): The language of the text in the files. - chosen_redact_entities (List[str]): A list of entity types to redact from the files using the local model (spacy) with Microsoft Presidio. - chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from files, chosen from the official list from AWS Comprehend service - in_redact_method (str): The method to use for redaction. - in_allow_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None. - custom_recogniser_word_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None. - redact_whole_page_list (List[List[str]], optional): A list of allowed terms for redaction. Defaults to None. - latest_file_completed (int, optional): The index of the last completed file. Defaults to 0. - out_message (list, optional): A list to store output messages. Defaults to an empty list. - out_file_paths (list, optional): A list to store paths to the output files. Defaults to an empty list. - log_files_output_paths (list, optional): A list to store paths to the log files. Defaults to an empty list. - first_loop_state (bool, optional): A flag indicating if this is the first iteration. Defaults to False. - page_min (int, optional): The minimum page number to start redaction from. Defaults to 0. - page_max (int, optional): The maximum page number to end redaction at. Defaults to 999. - estimated_time_taken_state (float, optional): The estimated time taken for the redaction process. Defaults to 0.0. - handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Redact all identified handwriting", "Redact all identified signatures"]. - all_request_metadata_str (str, optional): A string containing all request metadata. Defaults to an empty string. - annotations_all_pages (dict, optional): A dictionary containing all image annotations. Defaults to an empty dictionary. - all_line_level_ocr_results_df (optional): A DataFrame containing all line-level OCR results. Defaults to an empty DataFrame. - all_decision_process_table (optional): A DataFrame containing all decision process tables. Defaults to an empty DataFrame. - pymupdf_doc (optional): A list containing the PDF document object. Defaults to an empty list. - current_loop_page (int, optional): The current page being processed in the loop. Defaults to 0. - page_break_return (bool, optional): A flag indicating if the function should return after a page break. Defaults to False. - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. - max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. - match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). - output_folder (str, optional): Output folder for results. - progress (gr.Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True. The function returns a redacted document along with processing logs. ''' combined_out_message = "" tic = time.perf_counter() all_request_metadata = all_request_metadata_str.split('\n') if all_request_metadata_str else [] #print("prepared_pdf_file_paths:", prepared_pdf_file_paths[0]) review_out_file_paths = [prepared_pdf_file_paths[0]] if isinstance(custom_recogniser_word_list, pd.DataFrame): custom_recogniser_word_list = custom_recogniser_word_list.iloc[:,0].tolist() # Sort the strings in order from the longest string to the shortest custom_recogniser_word_list = sorted(custom_recogniser_word_list, key=len, reverse=True) if isinstance(redact_whole_page_list, pd.DataFrame): redact_whole_page_list = redact_whole_page_list.iloc[:,0].tolist() # If this is the first time around, set variables to 0/blank if first_loop_state==True: #print("First_loop_state is True") latest_file_completed = 0 current_loop_page = 0 out_file_paths = [] estimate_total_processing_time = 0 estimated_time_taken_state = 0 # If not the first time around, and the current page loop has been set to a huge number (been through all pages), reset current page to 0 elif (first_loop_state == False) & (current_loop_page == 999): current_loop_page = 0 if not out_file_paths: out_file_paths = [] latest_file_completed = int(latest_file_completed) number_of_pages = len(prepared_pdf_image_paths) if isinstance(file_paths,str): number_of_files = 1 else: number_of_files = len(file_paths) # If we have already redacted the last file, return the input out_message and file list to the relevant components if latest_file_completed >= number_of_files: print("Completed last file") # Set to a very high number so as not to mix up with subsequent file processing by the user # latest_file_completed = 99 current_loop_page = 0 if isinstance(out_message, list): combined_out_message = '\n'.join(out_message) else: combined_out_message = out_message if len(review_out_file_paths) == 1: out_review_file_path = [x for x in out_file_paths if "review_file" in x] review_out_file_paths.extend(out_review_file_path) estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message) print("Estimated total processing time:", str(estimate_total_processing_time)) return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths # If we have reached the last page, return message if current_loop_page >= number_of_pages: print("Reached last page of document:", current_loop_page) # Set to a very high number so as not to mix up with subsequent file processing by the user current_loop_page = 999 combined_out_message = out_message if len(review_out_file_paths) == 1: out_review_file_path = [x for x in out_file_paths if "review_file" in x] review_out_file_paths.extend(out_review_file_path) return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = False, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths # Create allow list # If string, assume file path if isinstance(in_allow_list, str): in_allow_list = pd.read_csv(in_allow_list) if not in_allow_list.empty: in_allow_list_flat = in_allow_list.iloc[:,0].tolist() #print("In allow list:", in_allow_list_flat) else: in_allow_list_flat = [] # Try to connect to AWS services only if RUN_AWS_FUNCTIONS environmental variable is 1 if pii_identification_method == "AWS Comprehend": print("Trying to connect to AWS Comprehend service") if RUN_AWS_FUNCTIONS == "1": comprehend_client = boto3.client('comprehend') else: comprehend_client = "" out_message = "Cannot connect to AWS Comprehend service. Please choose another PII identification method." print(out_message) return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths else: comprehend_client = "" if in_redact_method == textract_option: print("Trying to connect to AWS Comprehend service") if RUN_AWS_FUNCTIONS == "1": textract_client = boto3.client('textract') else: textract_client = "" out_message = "Cannot connect to AWS Textract. Please choose another text extraction method." print(out_message) return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths else: textract_client = "" # Check if output_folder exists, create it if it doesn't if not os.path.exists(output_folder): os.makedirs(output_folder) progress(0.5, desc="Redacting file") if isinstance(file_paths, str): file_paths_list = [os.path.abspath(file_paths)] file_paths_loop = file_paths_list elif isinstance(file_paths, dict): file_paths = file_paths["name"] file_paths_list = [os.path.abspath(file_paths)] file_paths_loop = file_paths_list else: file_paths_list = file_paths file_paths_loop = [file_paths_list[int(latest_file_completed)]] # print("file_paths_list in choose_redactor function:", file_paths_list) for file in file_paths_loop: if isinstance(file, str): file_path = file else: file_path = file.name if file_path: pdf_file_name_without_ext = get_file_name_without_type(file_path) pdf_file_name_with_ext = os.path.basename(file_path) # print("Redacting file:", pdf_file_name_with_ext) is_a_pdf = is_pdf(file_path) == True if is_a_pdf == False and in_redact_method == text_ocr_option: # If user has not submitted a pdf, assume it's an image print("File is not a pdf, assuming that image analysis needs to be used.") in_redact_method = tesseract_ocr_option else: out_message = "No file selected" print(out_message) return combined_out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option: #Analyse and redact image-based pdf or image if is_pdf_or_image(file_path) == False: out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis." return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths print("Redacting file " + pdf_file_name_with_ext + " as an image-based file") pymupdf_doc, all_decision_process_table, log_files_output_paths, new_request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number = redact_image_pdf(file_path, prepared_pdf_image_paths, language, chosen_redact_entities, chosen_redact_comprehend_entities, in_allow_list_flat, is_a_pdf, page_min, page_max, in_redact_method, handwrite_signature_checkbox, "", current_loop_page, page_break_return, prepared_pdf_image_paths, annotations_all_pages, all_line_level_ocr_results_df, all_decision_process_table, pymupdf_doc, pii_identification_method, comprehend_query_number, comprehend_client, textract_client, custom_recogniser_word_list, redact_whole_page_list, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool) #print("log_files_output_paths at end of image redact function:", log_files_output_paths) # Save Textract request metadata (if exists) if new_request_metadata: #print("Request metadata:", new_request_metadata) all_request_metadata.append(new_request_metadata) elif in_redact_method == text_ocr_option: #log_files_output_paths = [] if is_pdf(file_path) == False: out_message = "Please upload a PDF file for text analysis. If you have an image, select 'Image analysis'." return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths # Analyse text-based pdf print('Redacting file as text-based PDF') pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number = redact_text_pdf(file_path, prepared_pdf_image_paths,language, chosen_redact_entities, chosen_redact_comprehend_entities, in_allow_list_flat, page_min, page_max, text_ocr_option, current_loop_page, page_break_return, annotations_all_pages, all_line_level_ocr_results_df, all_decision_process_table, pymupdf_doc, pii_identification_method, comprehend_query_number, comprehend_client, custom_recogniser_word_list, redact_whole_page_list, max_fuzzy_spelling_mistakes_num, match_fuzzy_whole_phrase_bool) else: out_message = "No redaction method selected" print(out_message) return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page,precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths # If at last page, save to file if current_loop_page >= number_of_pages: print("Current page loop:", current_loop_page, "is the last page.") latest_file_completed += 1 current_loop_page = 999 if latest_file_completed != len(file_paths_list): print("Completed file number:", str(latest_file_completed), "there are more files to do") # Save file if is_pdf(file_path) == False: out_redacted_pdf_file_path = output_folder + pdf_file_name_without_ext + "_redacted_as_pdf.pdf" #pymupdf_doc[0].save(out_redacted_pdf_file_path, "PDF" ,resolution=image_dpi, save_all=False) #print("pymupdf_doc", pymupdf_doc) #print("pymupdf_doc[0]", pymupdf_doc[0]) pymupdf_doc[-1].save(out_redacted_pdf_file_path, "PDF" ,resolution=image_dpi, save_all=False)#, append_images=pymupdf_doc[:1]) out_review_file_path = output_folder + pdf_file_name_without_ext + '_review_file.csv' else: out_redacted_pdf_file_path = output_folder + pdf_file_name_without_ext + "_redacted.pdf" pymupdf_doc.save(out_redacted_pdf_file_path) out_file_paths.append(out_redacted_pdf_file_path) #if log_files_output_paths: # log_files_output_paths.extend(log_files_output_paths) out_orig_pdf_file_path = output_folder + pdf_file_name_with_ext logs_output_file_name = out_orig_pdf_file_path + "_decision_process_output.csv" all_decision_process_table.to_csv(logs_output_file_name, index = None, encoding="utf-8") log_files_output_paths.append(logs_output_file_name) all_text_output_file_name = out_orig_pdf_file_path + "_ocr_output.csv" all_line_level_ocr_results_df.to_csv(all_text_output_file_name, index = None, encoding="utf-8") out_file_paths.append(all_text_output_file_name) # Save the gradio_annotation_boxes to a JSON file try: #print("Saving annotations to CSV") # Convert json to csv and also save this #print("annotations_all_pages:", annotations_all_pages) #print("all_decision_process_table:", all_decision_process_table) review_df = convert_review_json_to_pandas_df(annotations_all_pages, all_decision_process_table) out_review_file_path = out_orig_pdf_file_path + '_review_file.csv' review_df.to_csv(out_review_file_path, index=None) out_file_paths.append(out_review_file_path) print("Saved review file to csv") out_annotation_file_path = out_orig_pdf_file_path + '_review_file.json' with open(out_annotation_file_path, 'w') as f: json.dump(annotations_all_pages, f) log_files_output_paths.append(out_annotation_file_path) print("Saving annotations to JSON") except Exception as e: print("Could not save annotations to json or csv file:", e) # Make a combined message for the file if isinstance(out_message, list): combined_out_message = '\n'.join(out_message) # Ensure out_message is a list of strings else: combined_out_message = out_message toc = time.perf_counter() time_taken = toc - tic estimated_time_taken_state = estimated_time_taken_state + time_taken out_time_message = f" Redacted in {estimated_time_taken_state:0.1f} seconds." combined_out_message = combined_out_message + " " + out_time_message # Ensure this is a single string estimate_total_processing_time = sum_numbers_before_seconds(combined_out_message) #print("Estimated total processing time:", str(estimate_total_processing_time)) else: toc = time.perf_counter() time_taken = toc - tic estimated_time_taken_state = estimated_time_taken_state + time_taken # If textract requests made, write to logging file if all_request_metadata: all_request_metadata_str = '\n'.join(all_request_metadata).strip() all_request_metadata_file_path = output_folder + pdf_file_name_without_ext + "_textract_request_metadata.txt" with open(all_request_metadata_file_path, "w") as f: f.write(all_request_metadata_str) # Add the request metadata to the log outputs if not there already if all_request_metadata_file_path not in log_files_output_paths: log_files_output_paths.append(all_request_metadata_file_path) if combined_out_message: out_message = combined_out_message #print("\nout_message at choose_and_run_redactor end is:", out_message) # Ensure no duplicated output files log_files_output_paths = list(set(log_files_output_paths)) out_file_paths = list(set(out_file_paths)) review_out_file_paths = [prepared_pdf_file_paths[0], out_review_file_path] #print("log_files_output_paths:", log_files_output_paths) #print("out_file_paths:", out_file_paths) #print("review_out_file_paths:", review_out_file_paths) return out_message, out_file_paths, out_file_paths, gr.Number(value=latest_file_completed, label="Number of documents redacted", interactive=False, visible=False), log_files_output_paths, log_files_output_paths, estimated_time_taken_state, all_request_metadata_str, pymupdf_doc, annotations_all_pages, gr.Number(value=current_loop_page, precision=0, interactive=False, label = "Last redacted page in document", visible=False), gr.Checkbox(value = True, label="Page break reached", visible=False), all_line_level_ocr_results_df, all_decision_process_table, comprehend_query_number, review_out_file_paths def convert_pikepdf_coords_to_pymupdf(pymupdf_page, pikepdf_bbox, type="pikepdf_annot"): ''' Convert annotations from pikepdf to pymupdf format, handling the mediabox larger than rect. ''' # Use cropbox if available, otherwise use mediabox reference_box = pymupdf_page.rect mediabox = pymupdf_page.mediabox reference_box_height = reference_box.height reference_box_width = reference_box.width # Convert PyMuPDF coordinates back to PDF coordinates (bottom-left origin) media_height = mediabox.height media_width = mediabox.width media_reference_y_diff = media_height - reference_box_height media_reference_x_diff = media_width - reference_box_width y_diff_ratio = media_reference_y_diff / reference_box_height x_diff_ratio = media_reference_x_diff / reference_box_width # Extract the annotation rectangle field if type=="pikepdf_annot": rect_field = pikepdf_bbox["/Rect"] else: rect_field = pikepdf_bbox rect_coordinates = [float(coord) for coord in rect_field] # Convert to floats # Unpack coordinates x1, y1, x2, y2 = rect_coordinates new_x1 = x1 - (media_reference_x_diff * x_diff_ratio) new_y1 = media_height - y2 - (media_reference_y_diff * y_diff_ratio) new_x2 = x2 - (media_reference_x_diff * x_diff_ratio) new_y2 = media_height - y1 - (media_reference_y_diff * y_diff_ratio) return new_x1, new_y1, new_x2, new_y2 def convert_pikepdf_to_image_coords(pymupdf_page, annot, image:Image, type="pikepdf_annot"): ''' Convert annotations from pikepdf coordinates to image coordinates. ''' # Get the dimensions of the page in points with pymupdf rect_height = pymupdf_page.rect.height rect_width = pymupdf_page.rect.width # Get the dimensions of the image image_page_width, image_page_height = image.size # Calculate scaling factors between pymupdf and PIL image scale_width = image_page_width / rect_width scale_height = image_page_height / rect_height # Extract the /Rect field if type=="pikepdf_annot": rect_field = annot["/Rect"] else: rect_field = annot # Convert the extracted /Rect field to a list of floats rect_coordinates = [float(coord) for coord in rect_field] # Convert the Y-coordinates (flip using the image height) x1, y1, x2, y2 = rect_coordinates x1_image = x1 * scale_width new_y1_image = image_page_height - (y2 * scale_height) # Flip Y0 (since it starts from bottom) x2_image = x2 * scale_width new_y2_image = image_page_height - (y1 * scale_height) # Flip Y1 return x1_image, new_y1_image, x2_image, new_y2_image def convert_pikepdf_decision_output_to_image_coords(pymupdf_page, pikepdf_decision_ouput_data:List, image): if isinstance(image, str): image_path = image image = Image.open(image_path) # Loop through each item in the data for item in pikepdf_decision_ouput_data: # Extract the bounding box bounding_box = item['boundingBox'] # Create a pikepdf_bbox dictionary to match the expected input pikepdf_bbox = {"/Rect": bounding_box} # Call the conversion function new_x1, new_y1, new_x2, new_y2 = convert_pikepdf_to_image_coords(pymupdf_page, pikepdf_bbox, image, type="pikepdf_annot") # Update the original object with the new bounding box values item['boundingBox'] = [new_x1, new_y1, new_x2, new_y2] return pikepdf_decision_ouput_data def convert_image_coords_to_pymupdf(pymupdf_page, annot, image:Image, type="image_recognizer"): ''' Converts an image with redaction coordinates from a CustomImageRecognizerResult or pikepdf object with image coordinates to pymupdf coordinates. ''' rect_height = pymupdf_page.rect.height rect_width = pymupdf_page.rect.width image_page_width, image_page_height = image.size # Calculate scaling factors between PIL image and pymupdf scale_width = rect_width / image_page_width scale_height = rect_height / image_page_height # Calculate scaled coordinates if type == "image_recognizer": x1 = (annot.left * scale_width)# + page_x_adjust new_y1 = (annot.top * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom) x2 = ((annot.left + annot.width) * scale_width)# + page_x_adjust # Calculate x1 new_y2 = ((annot.top + annot.height) * scale_height)# - page_y_adjust # Calculate y1 correctly # Else assume it is a pikepdf derived object else: rect_field = annot["/Rect"] rect_coordinates = [float(coord) for coord in rect_field] # Convert to floats # Unpack coordinates x1, y1, x2, y2 = rect_coordinates #print("scale_width:", scale_width) #print("scale_height:", scale_height) x1 = (x1* scale_width)# + page_x_adjust new_y1 = ((y2 + (y1 - y2))* scale_height)# - page_y_adjust # Calculate y1 correctly x2 = ((x1 + (x2 - x1)) * scale_width)# + page_x_adjust # Calculate x1 new_y2 = (y2 * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom) return x1, new_y1, x2, new_y2 def convert_gradio_annotation_coords_to_pymupdf(pymupdf_page:Page, annot:dict, image:Image): ''' Converts an image with redaction coordinates from a gradio annotation component to pymupdf coordinates. ''' rect_height = pymupdf_page.rect.height rect_width = pymupdf_page.rect.width image_page_width, image_page_height = image.size # Calculate scaling factors between PIL image and pymupdf scale_width = rect_width / image_page_width scale_height = rect_height / image_page_height # Calculate scaled coordinates x1 = (annot["xmin"] * scale_width)# + page_x_adjust new_y1 = (annot["ymin"] * scale_height)# - page_y_adjust # Flip Y0 (since it starts from bottom) x2 = ((annot["xmax"]) * scale_width)# + page_x_adjust # Calculate x1 new_y2 = ((annot["ymax"]) * scale_height)# - page_y_adjust # Calculate y1 correctly return x1, new_y1, x2, new_y2 def move_page_info(file_path: str) -> str: # Split the string at '.png' base, extension = file_path.rsplit('.pdf', 1) # Extract the page info page_info = base.split('page ')[1].split(' of')[0] # Get the page number new_base = base.replace(f'page {page_info} of ', '') # Remove the page info from the original position # Construct the new file path new_file_path = f"{new_base}_page_{page_info}.png" return new_file_path def redact_page_with_pymupdf(page:Page, page_annotations:dict, image=None, custom_colours:bool=False, redact_whole_page:bool=False, convert_coords:bool=True): mediabox_height = page.mediabox[3] - page.mediabox[1] mediabox_width = page.mediabox[2] - page.mediabox[0] rect_height = page.rect.height rect_width = page.rect.width pymupdf_x1 = None pymupdf_x2 = None out_annotation_boxes = {} all_image_annotation_boxes = [] image_path = "" if isinstance(image, Image.Image): image_path = move_page_info(str(page)) image.save(image_path) elif isinstance(image, str): image_path = image image = Image.open(image_path) # Check if this is an object used in the Gradio Annotation component if isinstance (page_annotations, dict): page_annotations = page_annotations["boxes"] for annot in page_annotations: # Check if an Image recogniser result, or a Gradio annotation object if (isinstance(annot, CustomImageRecognizerResult)) | isinstance(annot, dict): img_annotation_box = {} # Should already be in correct format if img_annotator_box is an input if isinstance(annot, dict): img_annotation_box = annot pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_gradio_annotation_coords_to_pymupdf(page, annot, image) x1 = pymupdf_x1 x2 = pymupdf_x2 if hasattr(annot, 'text') and annot.text: img_annotation_box["text"] = annot.text else: img_annotation_box["text"] = "" # Else should be CustomImageRecognizerResult else: pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image) x1 = pymupdf_x1 x2 = pymupdf_x2 img_annotation_box["xmin"] = annot.left img_annotation_box["ymin"] = annot.top img_annotation_box["xmax"] = annot.left + annot.width img_annotation_box["ymax"] = annot.top + annot.height img_annotation_box["color"] = (0,0,0) try: img_annotation_box["label"] = annot.entity_type except: img_annotation_box["label"] = "Redaction" if hasattr(annot, 'text') and annot.text: img_annotation_box["text"] = annot.text else: img_annotation_box["text"] = "" rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2) # Create the PyMuPDF Rect # Else it should be a pikepdf annotation object else: if convert_coords == True: pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_pikepdf_coords_to_pymupdf(page, annot) else: pymupdf_x1, pymupdf_y1, pymupdf_x2, pymupdf_y2 = convert_image_coords_to_pymupdf(page, annot, image, type="pikepdf_image_coords") x1 = pymupdf_x1 x2 = pymupdf_x2 rect = Rect(x1, pymupdf_y1, x2, pymupdf_y2) img_annotation_box = {} if image: img_width, img_height = image.size x1, image_y1, x2, image_y2 = convert_pymupdf_to_image_coords(page, x1, pymupdf_y1, x2, pymupdf_y2, image) img_annotation_box["xmin"] = x1 #* (img_width / rect_width) # Use adjusted x1 img_annotation_box["ymin"] = image_y1 #* (img_width / rect_width) # Use adjusted y1 img_annotation_box["xmax"] = x2# * (img_height / rect_height) # Use adjusted x2 img_annotation_box["ymax"] = image_y2 #* (img_height / rect_height) # Use adjusted y2 img_annotation_box["color"] = (0, 0, 0) if isinstance(annot, Dictionary): img_annotation_box["label"] = str(annot["/T"]) if hasattr(annot, 'Contents'): img_annotation_box["text"] = annot.Contents else: img_annotation_box["text"] = "" else: img_annotation_box["label"] = "REDACTION" img_annotation_box["text"] = "" # Convert to a PyMuPDF Rect object #rect = Rect(rect_coordinates) all_image_annotation_boxes.append(img_annotation_box) redact_single_box(page, rect, img_annotation_box, custom_colours) # If whole page is to be redacted, do that here if redact_whole_page == True: whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours, border = 5) all_image_annotation_boxes.append(whole_page_img_annotation_box) out_annotation_boxes = { "image": image_path, #Image.open(image_path), #image_path, "boxes": all_image_annotation_boxes } page.apply_redactions(images=0, graphics=0) page.clean_contents() return page, out_annotation_boxes ### # IMAGE-BASED OCR PDF TEXT DETECTION/REDACTION WITH TESSERACT OR AWS TEXTRACT ### def merge_img_bboxes(bboxes, combined_results: Dict, signature_recogniser_results=[], handwriting_recogniser_results=[], handwrite_signature_checkbox: List[str]=["Redact all identified handwriting", "Redact all identified signatures"], horizontal_threshold:int=50, vertical_threshold:int=12): all_bboxes = [] merged_bboxes = [] grouped_bboxes = defaultdict(list) # Deep copy original bounding boxes to retain them original_bboxes = copy.deepcopy(bboxes) # Process signature and handwriting results if signature_recogniser_results or handwriting_recogniser_results: if "Redact all identified handwriting" in handwrite_signature_checkbox: merged_bboxes.extend(copy.deepcopy(handwriting_recogniser_results)) if "Redact all identified signatures" in handwrite_signature_checkbox: merged_bboxes.extend(copy.deepcopy(signature_recogniser_results)) # Reconstruct bounding boxes for substrings of interest reconstructed_bboxes = [] for bbox in bboxes: bbox_box = (bbox.left, bbox.top, bbox.left + bbox.width, bbox.top + bbox.height) for line_text, line_info in combined_results.items(): line_box = line_info['bounding_box'] if bounding_boxes_overlap(bbox_box, line_box): if bbox.text in line_text: start_char = line_text.index(bbox.text) end_char = start_char + len(bbox.text) relevant_words = [] current_char = 0 for word in line_info['words']: word_end = current_char + len(word['text']) if current_char <= start_char < word_end or current_char < end_char <= word_end or (start_char <= current_char and word_end <= end_char): relevant_words.append(word) if word_end >= end_char: break current_char = word_end if not word['text'].endswith(' '): current_char += 1 # +1 for space if the word doesn't already end with a space if relevant_words: left = min(word['bounding_box'][0] for word in relevant_words) top = min(word['bounding_box'][1] for word in relevant_words) right = max(word['bounding_box'][2] for word in relevant_words) bottom = max(word['bounding_box'][3] for word in relevant_words) combined_text = " ".join(word['text'] for word in relevant_words) reconstructed_bbox = CustomImageRecognizerResult( bbox.entity_type, bbox.start, bbox.end, bbox.score, left, top, right - left, # width bottom - top, # height, combined_text ) #reconstructed_bboxes.append(bbox) # Add original bbox reconstructed_bboxes.append(reconstructed_bbox) # Add merged bbox break else: reconstructed_bboxes.append(bbox) # Group reconstructed bboxes by approximate vertical proximity for box in reconstructed_bboxes: grouped_bboxes[round(box.top / vertical_threshold)].append(box) # Merge within each group for _, group in grouped_bboxes.items(): group.sort(key=lambda box: box.left) merged_box = group[0] for next_box in group[1:]: if next_box.left - (merged_box.left + merged_box.width) <= horizontal_threshold: new_text = merged_box.text + " " + next_box.text if merged_box.entity_type != next_box.entity_type: new_entity_type = merged_box.entity_type + " - " + next_box.entity_type else: new_entity_type = merged_box.entity_type new_left = min(merged_box.left, next_box.left) new_top = min(merged_box.top, next_box.top) new_width = max(merged_box.left + merged_box.width, next_box.left + next_box.width) - new_left new_height = max(merged_box.top + merged_box.height, next_box.top + next_box.height) - new_top merged_box = CustomImageRecognizerResult( new_entity_type, merged_box.start, merged_box.end, merged_box.score, new_left, new_top, new_width, new_height, new_text ) else: merged_bboxes.append(merged_box) merged_box = next_box merged_bboxes.append(merged_box) all_bboxes.extend(original_bboxes) #all_bboxes.extend(reconstructed_bboxes) all_bboxes.extend(merged_bboxes) # Return the unique original and merged bounding boxes unique_bboxes = list({(bbox.left, bbox.top, bbox.width, bbox.height): bbox for bbox in all_bboxes}.values()) return unique_bboxes def redact_image_pdf(file_path:str, prepared_pdf_file_paths:List[str], language:str, chosen_redact_entities:List[str], chosen_redact_comprehend_entities:List[str], allow_list:List[str]=None, is_a_pdf:bool=True, page_min:int=0, page_max:int=999, analysis_type:str=tesseract_ocr_option, handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"], request_metadata:str="", current_loop_page:int=0, page_break_return:bool=False, images=[], annotations_all_pages:List=[], all_line_level_ocr_results_df = pd.DataFrame(), all_decision_process_table = pd.DataFrame(), pymupdf_doc = [], pii_identification_method:str="Local", comprehend_query_number:int=0, comprehend_client:str="", textract_client:str="", custom_recogniser_word_list:List[str]=[], redact_whole_page_list:List[str]=[], max_fuzzy_spelling_mistakes_num:int=1, match_fuzzy_whole_phrase_bool:bool=True, page_break_val:int=int(page_break_value), log_files_output_paths:List=[], max_time:int=int(max_time_value), progress=Progress(track_tqdm=True)): ''' This function redacts sensitive information from a PDF document. It takes the following parameters: - file_path (str): The path to the PDF file to be redacted. - prepared_pdf_file_paths (List[str]): A list of paths to the PDF file pages converted to images. - language (str): The language of the text in the PDF. - chosen_redact_entities (List[str]): A list of entity types to redact from the PDF. - chosen_redact_comprehend_entities (List[str]): A list of entity types to redact from the list allowed by the AWS Comprehend service. - allow_list (List[str], optional): A list of entity types to allow in the PDF. Defaults to None. - is_a_pdf (bool, optional): Indicates if the input file is a PDF. Defaults to True. - page_min (int, optional): The minimum page number to start redaction from. Defaults to 0. - page_max (int, optional): The maximum page number to end redaction at. Defaults to 999. - analysis_type (str, optional): The type of analysis to perform on the PDF. Defaults to tesseract_ocr_option. - handwrite_signature_checkbox (List[str], optional): A list of options for redacting handwriting and signatures. Defaults to ["Redact all identified handwriting", "Redact all identified signatures"]. - request_metadata (str, optional): Metadata related to the redaction request. Defaults to an empty string. - page_break_return (bool, optional): Indicates if the function should return after a page break. Defaults to False. - images (list, optional): List of image objects for each PDF page. - annotations_all_pages (List, optional): List of annotations on all pages that is used by the gradio_image_annotation object. - all_line_level_ocr_results_df (pd.DataFrame(), optional): All line level OCR results for the document as a Pandas dataframe, - all_decision_process_table (pd.DataFrame(), optional): All redaction decisions for document as a Pandas dataframe. - pymupdf_doc (List, optional): The document as a PyMupdf object. - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. - comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package. - textract_client (optional): A connection to the AWS Textract service via the boto3 package. - custom_recogniser_word_list (optional): A list of custom words that the user has chosen specifically to redact. - redact_whole_page_list (optional, List[str]): A list of pages to fully redact. - max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. - match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). - page_break_val (int, optional): The value at which to trigger a page break. Defaults to 3. - log_files_output_paths (List, optional): List of file paths used for saving redaction process logging results. - max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs. - progress (Progress, optional): A progress tracker for the redaction process. Defaults to a Progress object with track_tqdm set to True. The function returns a redacted PDF document along with processing output objects. ''' file_name = get_file_name_without_type(file_path) fill = (0, 0, 0) # Fill colour for redactions comprehend_query_number_new = 0 # Update custom word list analyser object with any new words that have been added to the custom deny list #print("custom_recogniser_word_list:", custom_recogniser_word_list) if custom_recogniser_word_list: nlp_analyser.registry.remove_recognizer("CUSTOM") new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list) #print("new_custom_recogniser:", new_custom_recogniser) nlp_analyser.registry.add_recognizer(new_custom_recogniser) nlp_analyser.registry.remove_recognizer("CUSTOM_FUZZY") new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_recogniser_word_list, spelling_mistakes_max=max_fuzzy_spelling_mistakes_num, search_whole_phrase=match_fuzzy_whole_phrase_bool) #print("new_custom_recogniser:", new_custom_recogniser) nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) image_analyser = CustomImageAnalyzerEngine(nlp_analyser) if pii_identification_method == "AWS Comprehend" and comprehend_client == "": print("Connection to AWS Comprehend service unsuccessful.") return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number if analysis_type == textract_option and textract_client == "": print("Connection to AWS Textract service unsuccessful.") return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number tic = time.perf_counter() if not prepared_pdf_file_paths: out_message = "PDF does not exist as images. Converting pages to image" print(out_message) prepared_pdf_file_paths = process_file(file_path) number_of_pages = len(prepared_pdf_file_paths) print("Number of pages:", str(number_of_pages)) # Check that page_min and page_max are within expected ranges if page_max > number_of_pages or page_max == 0: page_max = number_of_pages if page_min <= 0: page_min = 0 else: page_min = page_min - 1 print("Page range:", str(page_min + 1), "to", str(page_max)) #print("Current_loop_page:", current_loop_page) # If running Textract, check if file already exists. If it does, load in existing data # Import results from json and convert if analysis_type == textract_option: json_file_path = output_folder + file_name + "_textract.json" if not os.path.exists(json_file_path): print("No existing Textract results file found.") textract_data = {} #text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract #log_files_output_paths.append(json_file_path) #request_metadata = request_metadata + "\n" + new_request_metadata #wrapped_text_blocks = {"pages":[text_blocks]} else: # Open the file and load the JSON data no_textract_file = False print("Found existing Textract json results file.") if json_file_path not in log_files_output_paths: log_files_output_paths.append(json_file_path) with open(json_file_path, 'r') as json_file: textract_data = json.load(json_file) ### if current_loop_page == 0: page_loop_start = 0 else: page_loop_start = current_loop_page progress_bar = tqdm(range(page_loop_start, number_of_pages), unit="pages remaining", desc="Redacting pages") for page_no in progress_bar: handwriting_or_signature_boxes = [] signature_recogniser_results = [] handwriting_recogniser_results = [] page_break_return = False reported_page_number = str(page_no + 1) #print("Redacting page:", reported_page_number) # Assuming prepared_pdf_file_paths[page_no] is a PIL image object try: image = prepared_pdf_file_paths[page_no]#.copy() #print("image:", image) except Exception as e: print("Could not redact page:", reported_page_number, "due to:", e) continue image_annotations = {"image": image, "boxes": []} pymupdf_page = pymupdf_doc.load_page(page_no) if page_no >= page_min and page_no < page_max: #print("Image is in range of pages to redact") if isinstance(image, str): #print("image is a file path", image) image = Image.open(image) # Need image size to convert textract OCR outputs to the correct sizes page_width, page_height = image.size # Possibility to use different languages if language == 'en': ocr_lang = 'eng' else: ocr_lang = language # Step 1: Perform OCR. Either with Tesseract, or with AWS Textract if analysis_type == tesseract_ocr_option: word_level_ocr_results = image_analyser.perform_ocr(image) line_level_ocr_results, line_level_ocr_results_with_children = combine_ocr_results(word_level_ocr_results) # Import results from json and convert if analysis_type == textract_option: # Convert the image to bytes using an in-memory buffer image_buffer = io.BytesIO() image.save(image_buffer, format='PNG') # Save as PNG, or adjust format if needed pdf_page_as_bytes = image_buffer.getvalue() if not textract_data: try: text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract if json_file_path not in log_files_output_paths: log_files_output_paths.append(json_file_path) textract_data = {"pages":[text_blocks]} except Exception as e: print("Textract extraction for page", reported_page_number, "failed due to:", e) textract_data = {"pages":[]} new_request_metadata = "Failed Textract API call" request_metadata = request_metadata + "\n" + new_request_metadata else: # Check if the current reported_page_number exists in the loaded JSON page_exists = any(page['page_no'] == reported_page_number for page in textract_data.get("pages", [])) if not page_exists: # If the page does not exist, analyze again print(f"Page number {reported_page_number} not found in existing Textract data. Analysing.") try: text_blocks, new_request_metadata = analyse_page_with_textract(pdf_page_as_bytes, reported_page_number, textract_client, handwrite_signature_checkbox) # Analyse page with Textract except Exception as e: print("Textract extraction for page", reported_page_number, "failed due to:", e) text_bocks = [] new_request_metadata = "Failed Textract API call" # Check if "pages" key exists, if not, initialize it as an empty list if "pages" not in textract_data: textract_data["pages"] = [] # Append the new page data textract_data["pages"].append(text_blocks) request_metadata = request_metadata + "\n" + new_request_metadata else: # If the page exists, retrieve the data text_blocks = next(page['data'] for page in textract_data["pages"] if page['page_no'] == reported_page_number) line_level_ocr_results, handwriting_or_signature_boxes, signature_recogniser_results, handwriting_recogniser_results, line_level_ocr_results_with_children = json_to_ocrresult(text_blocks, page_width, page_height, reported_page_number) # Step 2: Analyze text and identify PII if chosen_redact_entities or chosen_redact_comprehend_entities: redaction_bboxes, comprehend_query_number_new = image_analyser.analyze_text( line_level_ocr_results, line_level_ocr_results_with_children, chosen_redact_comprehend_entities = chosen_redact_comprehend_entities, pii_identification_method = pii_identification_method, comprehend_client=comprehend_client, language=language, entities=chosen_redact_entities, allow_list=allow_list, score_threshold=score_threshold ) comprehend_query_number = comprehend_query_number + comprehend_query_number_new else: redaction_bboxes = [] if analysis_type == tesseract_ocr_option: interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + ".txt" elif analysis_type == textract_option: interim_results_file_path = output_folder + "interim_analyser_bboxes_" + file_name + "_pages_" + str(page_min + 1) + "_" + str(page_max) + "_textract.txt" # Save decision making process bboxes_str = str(redaction_bboxes) with open(interim_results_file_path, "w") as f: f.write(bboxes_str) # Merge close bounding boxes merged_redaction_bboxes = merge_img_bboxes(redaction_bboxes, line_level_ocr_results_with_children, signature_recogniser_results, handwriting_recogniser_results, handwrite_signature_checkbox) # 3. Draw the merged boxes if is_pdf(file_path) == False: draw = ImageDraw.Draw(image) all_image_annotations_boxes = [] for box in merged_redaction_bboxes: #print("box:", box) x0 = box.left y0 = box.top x1 = x0 + box.width y1 = y0 + box.height try: label = box.entity_type except: label = "Redaction" # Directly append the dictionary with the required keys all_image_annotations_boxes.append({ "xmin": x0, "ymin": y0, "xmax": x1, "ymax": y1, "label": label, "color": (0, 0, 0) }) draw.rectangle([x0, y0, x1, y1], fill=fill) # Adjusted to use a list for rectangle image_annotations = {"image": file_path, "boxes": all_image_annotations_boxes} ## Apply annotations with pymupdf else: print("merged_redaction_boxes:", merged_redaction_bboxes) #print("redact_whole_page_list:", redact_whole_page_list) if redact_whole_page_list: int_reported_page_number = int(reported_page_number) if int_reported_page_number in redact_whole_page_list: redact_whole_page = True else: redact_whole_page = False else: redact_whole_page = False pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, merged_redaction_bboxes, image, redact_whole_page=redact_whole_page) # Convert decision process to table decision_process_table = pd.DataFrame([{ 'text': result.text, 'xmin': result.left, 'ymin': result.top, 'xmax': result.left + result.width, 'ymax': result.top + result.height, 'label': result.entity_type, 'start': result.start, 'end': result.end, 'score': result.score, 'page': reported_page_number } for result in merged_redaction_bboxes]) #'left': result.left, #'top': result.top, #'width': result.width, #'height': result.height, all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table]) # Convert to DataFrame and add to ongoing logging table line_level_ocr_results_df = pd.DataFrame([{ 'page': reported_page_number, 'text': result.text, 'left': result.left, 'top': result.top, 'width': result.width, 'height': result.height } for result in line_level_ocr_results]) all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, line_level_ocr_results_df]) toc = time.perf_counter() time_taken = toc - tic #print("toc - tic:", time_taken) # Break if time taken is greater than max_time seconds if time_taken > max_time: print("Processing for", max_time, "seconds, breaking loop.") page_break_return = True progress.close(_tqdm=progress_bar) tqdm._instances.clear() if is_pdf(file_path) == False: images.append(image) pymupdf_doc = images # Check if the image already exists in annotations_all_pages #print("annotations_all_pages:", annotations_all_pages) existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None) if existing_index is not None: # Replace the existing annotation annotations_all_pages[existing_index] = image_annotations else: # Append new annotation if it doesn't exist annotations_all_pages.append(image_annotations) if analysis_type == textract_option: # Write the updated existing textract data back to the JSON file with open(json_file_path, 'w') as json_file: json.dump(textract_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed if json_file_path not in log_files_output_paths: log_files_output_paths.append(json_file_path) current_loop_page += 1 return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number if is_pdf(file_path) == False: images.append(image) pymupdf_doc = images # Check if the image already exists in annotations_all_pages #print("annotations_all_pages:", annotations_all_pages) existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None) if existing_index is not None: # Replace the existing annotation annotations_all_pages[existing_index] = image_annotations else: # Append new annotation if it doesn't exist annotations_all_pages.append(image_annotations) current_loop_page += 1 # Break if new page is a multiple of chosen page_break_val if current_loop_page % page_break_val == 0: page_break_return = True progress.close(_tqdm=progress_bar) tqdm._instances.clear() if analysis_type == textract_option: # Write the updated existing textract data back to the JSON file with open(json_file_path, 'w') as json_file: json.dump(textract_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed if json_file_path not in log_files_output_paths: log_files_output_paths.append(json_file_path) return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number if analysis_type == textract_option: # Write the updated existing textract data back to the JSON file with open(json_file_path, 'w') as json_file: json.dump(textract_data, json_file, indent=4) # indent=4 makes the JSON file pretty-printed if json_file_path not in log_files_output_paths: log_files_output_paths.append(json_file_path) return pymupdf_doc, all_decision_process_table, log_files_output_paths, request_metadata, annotations_all_pages, current_loop_page, page_break_return, all_line_level_ocr_results_df, comprehend_query_number ### # PIKEPDF TEXT DETECTION/REDACTION ### def get_text_container_characters(text_container:LTTextContainer): if isinstance(text_container, LTTextContainer): characters = [char for line in text_container if isinstance(line, LTTextLine) or isinstance(line, LTTextLineHorizontal) for char in line] #print("Initial characters:", characters) return characters return [] def create_text_bounding_boxes_from_characters(char_objects:List[LTChar]) -> Tuple[List[OCRResult], List[LTChar]]: ''' Create an OCRResult object based on a list of pdfminer LTChar objects. ''' line_level_results_out = [] line_level_characters_out = [] #all_line_level_characters_out = [] character_objects_out = [] # New list to store character objects # character_text_objects_out = [] # Initialize variables full_text = "" added_text = "" overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1] word_bboxes = [] # Iterate through the character objects current_word = "" current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # [x0, y0, x1, y1] for char in char_objects: character_objects_out.append(char) # Collect character objects if not isinstance(char, LTAnno): character_text = char.get_text() # character_text_objects_out.append(character_text) if isinstance(char, LTAnno): # print("Character line:", "".join(character_text_objects_out)) # print("Char is an annotation object:", char) added_text = char.get_text() # Handle double quotes #added_text = added_text.replace('"', '\\"') # Escape double quotes # Handle space separately by finalizing the word full_text += added_text # Adds space or newline if current_word: # Only finalize if there is a current word word_bboxes.append((current_word, current_word_bbox)) current_word = "" current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] # Reset for next word # Check for line break (assuming a new line is indicated by a specific character) if '\n' in added_text: #print("char_anno:", char) # Finalize the current line if current_word: word_bboxes.append((current_word, current_word_bbox)) # Create an OCRResult for the current line line_level_results_out.append(OCRResult(full_text.strip(), round(overall_bbox[0], 2), round(overall_bbox[1], 2), round(overall_bbox[2] - overall_bbox[0], 2), round(overall_bbox[3] - overall_bbox[1], 2))) line_level_characters_out.append(character_objects_out) # Reset for the next line character_objects_out = [] full_text = "" overall_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] current_word = "" current_word_bbox = [float('inf'), float('inf'), float('-inf'), float('-inf')] continue # Concatenate text for LTChar #full_text += char.get_text() #added_text = re.sub(r'[^\x00-\x7F]+', ' ', char.get_text()) added_text = char.get_text() if re.search(r'[^\x00-\x7F]', added_text): # Matches any non-ASCII character #added_text.encode('latin1', errors='replace').decode('utf-8') added_text = clean_unicode_text(added_text) full_text += added_text # Adds space or newline, removing # Update overall bounding box x0, y0, x1, y1 = char.bbox overall_bbox[0] = min(overall_bbox[0], x0) # x0 overall_bbox[1] = min(overall_bbox[1], y0) # y0 overall_bbox[2] = max(overall_bbox[2], x1) # x1 overall_bbox[3] = max(overall_bbox[3], y1) # y1 # Update current word #current_word += char.get_text() current_word += added_text # Update current word bounding box current_word_bbox[0] = min(current_word_bbox[0], x0) # x0 current_word_bbox[1] = min(current_word_bbox[1], y0) # y0 current_word_bbox[2] = max(current_word_bbox[2], x1) # x1 current_word_bbox[3] = max(current_word_bbox[3], y1) # y1 # Finalize the last word if any if current_word: word_bboxes.append((current_word, current_word_bbox)) if full_text: #print("full_text before:", full_text) if re.search(r'[^\x00-\x7F]', full_text): # Matches any non-ASCII character # Convert special characters to a human-readable format #full_text = full_text.encode('latin1', errors='replace').decode('utf-8') full_text = clean_unicode_text(full_text) full_text = full_text.strip() #print("full_text:", full_text) line_level_results_out.append(OCRResult(full_text.strip(), round(overall_bbox[0],2), round(overall_bbox[1], 2), round(overall_bbox[2]-overall_bbox[0],2), round(overall_bbox[3]-overall_bbox[1],2))) #line_level_characters_out = character_objects_out return line_level_results_out, line_level_characters_out # Return both results and character objects def create_text_redaction_process_results(analyser_results, analysed_bounding_boxes, page_num): decision_process_table = pd.DataFrame() if len(analyser_results) > 0: # Create summary df of annotations to be made analysed_bounding_boxes_df_new = pd.DataFrame(analysed_bounding_boxes) # Remove brackets and split the string into four separate columns #print("analysed_bounding_boxes_df_new:", analysed_bounding_boxes_df_new['boundingBox']) # analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new['boundingBox'].str.strip('[]').str.split(',', expand=True) # Split the boundingBox list into four separate columns analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']] = analysed_bounding_boxes_df_new['boundingBox'].apply(pd.Series) # Convert the new columns to integers (if needed) analysed_bounding_boxes_df_new.loc[:, ['xmin', 'ymin', 'xmax', 'ymax']] = (analysed_bounding_boxes_df_new[['xmin', 'ymin', 'xmax', 'ymax']].astype(float) / 5).round() * 5 analysed_bounding_boxes_df_text = analysed_bounding_boxes_df_new['result'].astype(str).str.split(",",expand=True).replace(".*: ", "", regex=True) analysed_bounding_boxes_df_text.columns = ["label", "start", "end", "score"] analysed_bounding_boxes_df_new = pd.concat([analysed_bounding_boxes_df_new, analysed_bounding_boxes_df_text], axis = 1) analysed_bounding_boxes_df_new['page'] = page_num + 1 decision_process_table = pd.concat([decision_process_table, analysed_bounding_boxes_df_new], axis = 0).drop('result', axis=1) #print('\n\ndecision_process_table:\n\n', decision_process_table) return decision_process_table def create_pikepdf_annotations_for_bounding_boxes(analysed_bounding_boxes): pikepdf_annotations_on_page = [] for analysed_bounding_box in analysed_bounding_boxes: #print("analysed_bounding_box:", analysed_bounding_boxes) bounding_box = analysed_bounding_box["boundingBox"] annotation = Dictionary( Type=Name.Annot, Subtype=Name.Square, #Name.Highlight, QuadPoints=[bounding_box[0], bounding_box[3], bounding_box[2], bounding_box[3], bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[1]], Rect=[bounding_box[0], bounding_box[1], bounding_box[2], bounding_box[3]], C=[0, 0, 0], IC=[0, 0, 0], CA=1, # Transparency T=analysed_bounding_box["result"].entity_type, Contents=analysed_bounding_box["text"], BS=Dictionary( W=0, # Border width: 1 point S=Name.S # Border style: solid ) ) pikepdf_annotations_on_page.append(annotation) return pikepdf_annotations_on_page def redact_text_pdf( filename: str, # Path to the PDF file to be redacted prepared_pdf_image_path: str, # Path to the prepared PDF image for redaction language: str, # Language of the PDF content chosen_redact_entities: List[str], # List of entities to be redacted chosen_redact_comprehend_entities: List[str], allow_list: List[str] = None, # Optional list of allowed entities page_min: int = 0, # Minimum page number to start redaction page_max: int = 999, # Maximum page number to end redaction analysis_type: str = text_ocr_option, # Type of analysis to perform current_loop_page: int = 0, # Current page being processed in the loop page_break_return: bool = False, # Flag to indicate if a page break should be returned annotations_all_pages: List = [], # List of annotations across all pages all_line_level_ocr_results_df: pd.DataFrame = pd.DataFrame(), # DataFrame for OCR results all_decision_process_table: pd.DataFrame = pd.DataFrame(), # DataFrame for decision process table pymupdf_doc: List = [], # List of PyMuPDF documents pii_identification_method: str = "Local", comprehend_query_number:int = 0, comprehend_client="", custom_recogniser_word_list:List[str]=[], redact_whole_page_list:List[str]=[], max_fuzzy_spelling_mistakes_num:int=1, match_fuzzy_whole_phrase_bool:bool=True, page_break_val: int = int(page_break_value), # Value for page break max_time: int = int(max_time_value), progress: Progress = Progress(track_tqdm=True) # Progress tracking object ): ''' Redact chosen entities from a PDF that is made up of multiple pages that are not images. Input Variables: - filename: Path to the PDF file to be redacted - prepared_pdf_image_path: Path to the prepared PDF image for redaction - language: Language of the PDF content - chosen_redact_entities: List of entities to be redacted - chosen_redact_comprehend_entities: List of entities to be redacted for AWS Comprehend - allow_list: Optional list of allowed entities - page_min: Minimum page number to start redaction - page_max: Maximum page number to end redaction - analysis_type: Type of analysis to perform - current_loop_page: Current page being processed in the loop - page_break_return: Flag to indicate if a page break should be returned - annotations_all_pages: List of annotations across all pages - all_line_level_ocr_results_df: DataFrame for OCR results - all_decision_process_table: DataFrame for decision process table - pymupdf_doc: List of PyMuPDF documents - pii_identification_method (str, optional): The method to redact personal information. Either 'Local' (spacy model), or 'AWS Comprehend' (AWS Comprehend API). - comprehend_query_number (int, optional): A counter tracking the number of queries to AWS Comprehend. - comprehend_client (optional): A connection to the AWS Comprehend service via the boto3 package. - custom_recogniser_word_list (optional, List[str]): A list of custom words that the user has chosen specifically to redact. - redact_whole_page_list (optional, List[str]): A list of pages to fully redact. - max_fuzzy_spelling_mistakes_num (int, optional): The maximum number of spelling mistakes allowed in a searched phrase for fuzzy matching. Can range from 0-9. - match_fuzzy_whole_phrase_bool (bool, optional): A boolean where 'True' means that the whole phrase is fuzzy matched, and 'False' means that each word is fuzzy matched separately (excluding stop words). - page_break_val: Value for page break - max_time (int, optional): The maximum amount of time (s) that the function should be running before it breaks. To avoid timeout errors with some APIs. - progress: Progress tracking object ''' if pii_identification_method == "AWS Comprehend" and comprehend_client == "": print("Connection to AWS Comprehend service not found.") return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number # Update custom word list analyser object with any new words that have been added to the custom deny list #print("custom_recogniser_word_list:", custom_recogniser_word_list) if custom_recogniser_word_list: nlp_analyser.registry.remove_recognizer("CUSTOM") new_custom_recogniser = custom_word_list_recogniser(custom_recogniser_word_list) nlp_analyser.registry.add_recognizer(new_custom_recogniser) nlp_analyser.registry.remove_recognizer("CUSTOM_FUZZY") new_custom_fuzzy_recogniser = CustomWordFuzzyRecognizer(supported_entities=["CUSTOM_FUZZY"], custom_list=custom_recogniser_word_list, spelling_mistakes_max=max_fuzzy_spelling_mistakes_num, search_whole_phrase=match_fuzzy_whole_phrase_bool) nlp_analyser.registry.add_recognizer(new_custom_fuzzy_recogniser) # List all elements currently in the nlp_analyser registry #print("Current recognizers in nlp_analyser registry:") #for recognizer_name in nlp_analyser.registry.recognizers: # print(recognizer_name) #print("Custom recogniser:", nlp_analyser.registry.) tic = time.perf_counter() # Open with Pikepdf to get text lines pikepdf_pdf = Pdf.open(filename) number_of_pages = len(pikepdf_pdf.pages) # Check that page_min and page_max are within expected ranges if page_max > number_of_pages or page_max == 0: page_max = number_of_pages if page_min <= 0: page_min = 0 else: page_min = page_min - 1 print("Page range is",str(page_min + 1), "to", str(page_max)) print("Current_loop_page:", current_loop_page) if current_loop_page == 0: page_loop_start = 0 else: page_loop_start = current_loop_page progress_bar = tqdm(range(current_loop_page, number_of_pages), unit="pages remaining", desc="Redacting pages") #for page_no in range(0, number_of_pages): for page_no in progress_bar: reported_page_number = str(page_no + 1) #print("Redacting page:", reported_page_number) # Assuming prepared_pdf_file_paths[page_no] is a PIL image object try: image = prepared_pdf_image_path[page_no]#.copy() #print("image:", image) except Exception as e: print("Could not redact page:", reported_page_number, "due to:", e) continue image_annotations = {"image": image, "boxes": []} pymupdf_page = pymupdf_doc.load_page(page_no) if page_min <= page_no < page_max: if isinstance(image, str): image_path = image image = Image.open(image_path) for page_layout in extract_pages(filename, page_numbers = [page_no], maxpages=1): all_line_characters = [] all_line_level_text_results_list = [] page_analyser_results = [] page_analysed_bounding_boxes = [] characters = [] pikepdf_annotations_on_page = [] decision_process_table_on_page = pd.DataFrame() page_text_ocr_outputs = pd.DataFrame() if analysis_type == text_ocr_option: for n, text_container in enumerate(page_layout): characters = [] #print("text container:", text_container) if isinstance(text_container, LTTextContainer) or isinstance(text_container, LTAnno): characters = get_text_container_characters(text_container) # Create dataframe for all the text on the page line_level_text_results_list, line_characters = create_text_bounding_boxes_from_characters(characters) ### Create page_text_ocr_outputs (OCR format outputs) if line_level_text_results_list: # Convert to DataFrame and add to ongoing logging table line_level_text_results_df = pd.DataFrame([{ 'page': page_no + 1, 'text': (result.text).strip(), 'left': result.left, 'top': result.top, 'width': result.width, 'height': result.height } for result in line_level_text_results_list]) page_text_ocr_outputs = pd.concat([page_text_ocr_outputs, line_level_text_results_df]) all_line_level_text_results_list.extend(line_level_text_results_list) all_line_characters.extend(line_characters) ### REDACTION if chosen_redact_entities or chosen_redact_comprehend_entities: #print("Identifying redactions on page.") page_analysed_bounding_boxes = run_page_text_redaction( language, chosen_redact_entities, chosen_redact_comprehend_entities, all_line_level_text_results_list, all_line_characters, page_analyser_results, page_analysed_bounding_boxes, comprehend_client, allow_list, pii_identification_method, nlp_analyser, score_threshold, custom_entities, comprehend_query_number ) #print("page_analyser_results:", page_analyser_results) #print("page_analysed_bounding_boxes:", page_analysed_bounding_boxes) #print("image:", image) else: page_analysed_bounding_boxes = [] page_analysed_bounding_boxes = convert_pikepdf_decision_output_to_image_coords(pymupdf_page, page_analysed_bounding_boxes, image) #print("page_analysed_bounding_boxes_out_converted:", page_analysed_bounding_boxes) # Annotate redactions on page pikepdf_annotations_on_page = create_pikepdf_annotations_for_bounding_boxes(page_analysed_bounding_boxes) # print("pikepdf_annotations_on_page:", pikepdf_annotations_on_page) # Make pymupdf page redactions #print("redact_whole_page_list:", redact_whole_page_list) if redact_whole_page_list: int_reported_page_number = int(reported_page_number) if int_reported_page_number in redact_whole_page_list: redact_whole_page = True else: redact_whole_page = False else: redact_whole_page = False pymupdf_page, image_annotations = redact_page_with_pymupdf(pymupdf_page, pikepdf_annotations_on_page, image, redact_whole_page=redact_whole_page, convert_coords=False) #print("image_annotations:", image_annotations) #print("Did redact_page_with_pymupdf function") reported_page_no = page_no + 1 print("For page number:", reported_page_no, "there are", len(image_annotations["boxes"]), "annotations") # Join extracted text outputs for all lines together if not page_text_ocr_outputs.empty: page_text_ocr_outputs = page_text_ocr_outputs.sort_values(["top", "left"], ascending=[False, False]).reset_index(drop=True) all_line_level_ocr_results_df = pd.concat([all_line_level_ocr_results_df, page_text_ocr_outputs]) # Write logs # Create decision process table decision_process_table_on_page = create_text_redaction_process_results(page_analyser_results, page_analysed_bounding_boxes, current_loop_page) if not decision_process_table_on_page.empty: all_decision_process_table = pd.concat([all_decision_process_table, decision_process_table_on_page]) #print("all_decision_process_table:", all_decision_process_table) toc = time.perf_counter() time_taken = toc - tic #print("toc - tic:", time_taken) # Break if time taken is greater than max_time seconds if time_taken > max_time: print("Processing for", max_time, "seconds, breaking.") page_break_return = True progress.close(_tqdm=progress_bar) tqdm._instances.clear() # Check if the image already exists in annotations_all_pages existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None) if existing_index is not None: # Replace the existing annotation annotations_all_pages[existing_index] = image_annotations else: # Append new annotation if it doesn't exist annotations_all_pages.append(image_annotations) current_loop_page += 1 return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number # Check if the image already exists in annotations_all_pages existing_index = next((index for index, ann in enumerate(annotations_all_pages) if ann["image"] == image_annotations["image"]), None) if existing_index is not None: # Replace the existing annotation annotations_all_pages[existing_index] = image_annotations else: # Append new annotation if it doesn't exist annotations_all_pages.append(image_annotations) current_loop_page += 1 # Break if new page is a multiple of 10 if current_loop_page % page_break_val == 0: page_break_return = True progress.close(_tqdm=progress_bar) return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number return pymupdf_doc, all_decision_process_table, all_line_level_ocr_results_df, annotations_all_pages, current_loop_page, page_break_return, comprehend_query_number