document_redaction / tools /aws_textract.py
seanpedrickcase's picture
More config options. Fixed some bugs with removing elements from review page and Adobe export. Some UI rearrangements
6319afc
raw
history blame
15.5 kB
import boto3
from typing import List
import io
import os
import json
from collections import defaultdict
import pikepdf
import time
from tools.custom_image_analyser_engine import OCRResult, CustomImageRecognizerResult
from tools.config import AWS_ACCESS_KEY, AWS_SECRET_KEY
def extract_textract_metadata(response:object):
"""Extracts metadata from an AWS Textract response."""
#print("Document metadata:", response['DocumentMetadata'])
request_id = response['ResponseMetadata']['RequestId']
pages = response['DocumentMetadata']['Pages']
#number_of_pages = response['DocumentMetadata']['NumberOfPages']
return str({
'RequestId': request_id,
'Pages': pages
#,
#'NumberOfPages': number_of_pages
})
def analyse_page_with_textract(pdf_page_bytes:object, page_no:int, client:str="", handwrite_signature_checkbox:List[str]=["Redact all identified handwriting", "Redact all identified signatures"]):
'''
Analyse page with AWS Textract
'''
if client == "":
try:
if AWS_ACCESS_KEY and AWS_SECRET_KEY:
client = boto3.client('textract',
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY)
else:
client = boto3.client('textract')
except:
print("Cannot connect to AWS Textract")
return [], "" # Return an empty list and an empty string
#print("Analysing page with AWS Textract")
#print("pdf_page_bytes:", pdf_page_bytes)
#print("handwrite_signature_checkbox:", handwrite_signature_checkbox)
# Redact signatures if specified
if "Redact all identified signatures" in handwrite_signature_checkbox:
#print("Analysing document with signature detection")
try:
response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
except Exception as e:
print("Textract call failed due to:", e, "trying again in 3 seconds.")
time.sleep(3)
response = client.analyze_document(Document={'Bytes': pdf_page_bytes}, FeatureTypes=["SIGNATURES"])
else:
#print("Analysing document without signature detection")
# Call detect_document_text to extract plain text
try:
response = client.detect_document_text(Document={'Bytes': pdf_page_bytes})
except Exception as e:
print("Textract call failed due to:", e, "trying again in 5 seconds.")
time.sleep(5)
response = client.detect_document_text(Document={'Bytes': pdf_page_bytes})
# Add the 'Page' attribute to each block
if "Blocks" in response:
for block in response["Blocks"]:
block["Page"] = page_no # Inject the page number into each block
# Wrap the response with the page number in the desired format
wrapped_response = {
'page_no': page_no,
'data': response
}
request_metadata = extract_textract_metadata(response) # Metadata comes out as a string
# Return a list containing the wrapped response and the metadata
return wrapped_response, request_metadata # Return as a list to match the desired structure
def convert_pike_pdf_page_to_bytes(pdf:object, page_num:int):
# Create a new empty PDF
new_pdf = pikepdf.Pdf.new()
# Specify the page number you want to extract (0-based index)
page_num = 0 # Example: first page
# Extract the specific page and add it to the new PDF
new_pdf.pages.append(pdf.pages[page_num])
# Save the new PDF to a bytes buffer
buffer = io.BytesIO()
new_pdf.save(buffer)
# Get the PDF bytes
pdf_bytes = buffer.getvalue()
# Now you can use the `pdf_bytes` to convert it to an image or further process
buffer.close()
#images = convert_from_bytes(pdf_bytes)
#image = images[0]
return pdf_bytes
def json_to_ocrresult(json_data:dict, page_width:float, page_height:float, page_no:int):
'''
Convert the json response from textract to the OCRResult format used elsewhere in the code. Looks for lines, words, and signatures. Handwriting and signatures are set aside especially for later in case the user wants to override the default behaviour and redact all handwriting/signatures.
'''
all_ocr_results = []
signature_or_handwriting_recogniser_results = []
signature_recogniser_results = []
handwriting_recogniser_results = []
signatures = []
handwriting = []
ocr_results_with_children = {}
text_block={}
i = 1
# Assuming json_data is structured as a dictionary with a "pages" key
#if "pages" in json_data:
# Find the specific page data
page_json_data = json_data #next((page for page in json_data["pages"] if page["page_no"] == page_no), None)
if "Blocks" in page_json_data:
# Access the data for the specific page
text_blocks = page_json_data["Blocks"] # Access the Blocks within the page data
# This is a new page
elif "page_no" in page_json_data:
text_blocks = page_json_data["data"]["Blocks"]
is_signature = False
is_handwriting = False
for text_block in text_blocks:
if (text_block['BlockType'] == 'LINE') | (text_block['BlockType'] == 'SIGNATURE'): # (text_block['BlockType'] == 'WORD') |
# Extract text and bounding box for the line
line_bbox = text_block["Geometry"]["BoundingBox"]
line_left = int(line_bbox["Left"] * page_width)
line_top = int(line_bbox["Top"] * page_height)
line_right = int((line_bbox["Left"] + line_bbox["Width"]) * page_width)
line_bottom = int((line_bbox["Top"] + line_bbox["Height"]) * page_height)
width_abs = int(line_bbox["Width"] * page_width)
height_abs = int(line_bbox["Height"] * page_height)
if text_block['BlockType'] == 'LINE':
# Extract text and bounding box for the line
line_text = text_block.get('Text', '')
words = []
current_line_handwriting_results = [] # Track handwriting results for this line
if 'Relationships' in text_block:
for relationship in text_block['Relationships']:
if relationship['Type'] == 'CHILD':
for child_id in relationship['Ids']:
child_block = next((block for block in text_blocks if block['Id'] == child_id), None)
if child_block and child_block['BlockType'] == 'WORD':
word_text = child_block.get('Text', '')
word_bbox = child_block["Geometry"]["BoundingBox"]
confidence = child_block.get('Confidence','')
word_left = int(word_bbox["Left"] * page_width)
word_top = int(word_bbox["Top"] * page_height)
word_right = int((word_bbox["Left"] + word_bbox["Width"]) * page_width)
word_bottom = int((word_bbox["Top"] + word_bbox["Height"]) * page_height)
# Extract BoundingBox details
word_width = word_bbox["Width"]
word_height = word_bbox["Height"]
# Convert proportional coordinates to absolute coordinates
word_width_abs = int(word_width * page_width)
word_height_abs = int(word_height * page_height)
words.append({
'text': word_text,
'bounding_box': (word_left, word_top, word_right, word_bottom)
})
# Check for handwriting
text_type = child_block.get("TextType", '')
if text_type == "HANDWRITING":
is_handwriting = True
entity_name = "HANDWRITING"
word_end = len(word_text)
recogniser_result = CustomImageRecognizerResult(
entity_type=entity_name,
text=word_text,
score=confidence,
start=0,
end=word_end,
left=word_left,
top=word_top,
width=word_width_abs,
height=word_height_abs
)
# Add to handwriting collections immediately
handwriting.append(recogniser_result)
handwriting_recogniser_results.append(recogniser_result)
signature_or_handwriting_recogniser_results.append(recogniser_result)
current_line_handwriting_results.append(recogniser_result)
# If handwriting or signature, add to bounding box
elif (text_block['BlockType'] == 'SIGNATURE'):
line_text = "SIGNATURE"
is_signature = True
entity_name = "SIGNATURE"
confidence = text_block.get('Confidence', 0)
word_end = len(line_text)
recogniser_result = CustomImageRecognizerResult(
entity_type=entity_name,
text=line_text,
score=confidence,
start=0,
end=word_end,
left=line_left,
top=line_top,
width=width_abs,
height=height_abs
)
# Add to signature collections immediately
signatures.append(recogniser_result)
signature_recogniser_results.append(recogniser_result)
signature_or_handwriting_recogniser_results.append(recogniser_result)
words = [{
'text': line_text,
'bounding_box': (line_left, line_top, line_right, line_bottom)
}]
ocr_results_with_children["text_line_" + str(i)] = {
"line": i,
'text': line_text,
'bounding_box': (line_left, line_top, line_right, line_bottom),
'words': words
}
# Create OCRResult with absolute coordinates
ocr_result = OCRResult(line_text, line_left, line_top, width_abs, height_abs)
all_ocr_results.append(ocr_result)
is_signature_or_handwriting = is_signature | is_handwriting
# If it is signature or handwriting, will overwrite the default behaviour of the PII analyser
if is_signature_or_handwriting:
if recogniser_result not in signature_or_handwriting_recogniser_results:
signature_or_handwriting_recogniser_results.append(recogniser_result)
if is_signature:
if recogniser_result not in signature_recogniser_results:
signature_recogniser_results.append(recogniser_result)
if is_handwriting:
if recogniser_result not in handwriting_recogniser_results:
handwriting_recogniser_results.append(recogniser_result)
i += 1
return all_ocr_results, signature_or_handwriting_recogniser_results, signature_recogniser_results, handwriting_recogniser_results, ocr_results_with_children
def load_and_convert_textract_json(textract_json_file_path:str, log_files_output_paths:str):
"""
Loads Textract JSON from a file, detects if conversion is needed,
and converts if necessary.
"""
if not os.path.exists(textract_json_file_path):
print("No existing Textract results file found.")
return {}, True, log_files_output_paths # Return empty dict and flag indicating missing file
no_textract_file = False
print("Found existing Textract json results file.")
# Track log files
if textract_json_file_path not in log_files_output_paths:
log_files_output_paths.append(textract_json_file_path)
try:
with open(textract_json_file_path, 'r', encoding='utf-8') as json_file:
textract_data = json.load(json_file)
except json.JSONDecodeError:
print("Error: Failed to parse Textract JSON file. Returning empty data.")
return {}, True, log_files_output_paths # Indicate failure
# Check if conversion is needed
if "pages" in textract_data:
print("JSON already in the new format. No changes needed.")
return textract_data, False, log_files_output_paths # No conversion required
if "Blocks" in textract_data:
print("Need to convert Textract JSON to app format.")
try:
from tools.aws_textract import restructure_textract_output
textract_data = restructure_textract_output(textract_data)
return textract_data, False, log_files_output_paths # Successfully converted
except Exception as e:
print("Failed to convert JSON data to app format due to:", e)
return {}, True, log_files_output_paths # Conversion failed
else:
print("Invalid Textract JSON format: 'Blocks' missing.")
print("textract data:", textract_data)
return {}, True, log_files_output_paths # Return empty data if JSON is not recognized
# Load Textract JSON output (assuming it's stored in a variable called `textract_output`)
def restructure_textract_output(textract_output:object):
'''
Reorganise textract output that comes from the bulk textract analysis option on AWS to format that works in this app.
'''
pages_dict = defaultdict(lambda: {"page_no": None, "data": {"Blocks": []}})
# Extract number of pages from DocumentMetadata
total_pages = textract_output.get("DocumentMetadata", {}).get("Pages", 1)
for block in textract_output.get("Blocks", []):
page_no = block.get("Page", 1) # Default to 1 if not present
# Ensure page metadata is only set once
if pages_dict[page_no]["page_no"] is None:
pages_dict[page_no]["page_no"] = str(page_no)
# Add block to corresponding page
pages_dict[page_no]["data"]["Blocks"].append(block)
# Convert dictionary to sorted list of pages
structured_output = {
"pages": [pages_dict[page] for page in sorted(pages_dict.keys())]
}
# Add DocumentMetadata to the first page's data (optional)
if structured_output["pages"]:
structured_output["pages"][0]["data"]["DocumentMetadata"] = textract_output.get("DocumentMetadata", {})
return structured_output