seanpedrickcase
commited on
Commit
•
5cdf399
1
Parent(s):
f301d67
Removed reference to ctransformers
Browse files- app.py +0 -74
- chatfuncs/chatfuncs.py +0 -2
app.py
CHANGED
@@ -9,11 +9,8 @@ import gradio as gr
|
|
9 |
import pandas as pd
|
10 |
|
11 |
from transformers import AutoTokenizer
|
12 |
-
from ctransformers import AutoModelForCausalLM
|
13 |
-
|
14 |
import torch
|
15 |
|
16 |
-
import llama_cpp
|
17 |
from llama_cpp import Llama
|
18 |
from huggingface_hub import hf_hub_download
|
19 |
|
@@ -59,77 +56,6 @@ import chatfuncs.chatfuncs as chatf
|
|
59 |
chatf.embeddings = load_embeddings(embeddings_name)
|
60 |
chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"])
|
61 |
|
62 |
-
# def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
|
63 |
-
# print("Loading model")
|
64 |
-
|
65 |
-
# # Default values inside the function
|
66 |
-
# if gpu_config is None:
|
67 |
-
# gpu_config = chatf.gpu_config
|
68 |
-
# if cpu_config is None:
|
69 |
-
# cpu_config = chatf.cpu_config
|
70 |
-
# if torch_device is None:
|
71 |
-
# torch_device = chatf.torch_device
|
72 |
-
|
73 |
-
# if model_type == "Mistral Open Orca (larger, slow)":
|
74 |
-
# if torch_device == "cuda":
|
75 |
-
# gpu_config.update_gpu(gpu_layers)
|
76 |
-
# else:
|
77 |
-
# gpu_config.update_gpu(gpu_layers)
|
78 |
-
# cpu_config.update_gpu(gpu_layers)
|
79 |
-
|
80 |
-
# print("Loading with", cpu_config.gpu_layers, "model layers sent to GPU.")
|
81 |
-
|
82 |
-
# print(vars(gpu_config))
|
83 |
-
# print(vars(cpu_config))
|
84 |
-
|
85 |
-
# try:
|
86 |
-
# #model = AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
|
87 |
-
# #model = AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
|
88 |
-
# model = AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
|
89 |
-
# #model = AutoModelForCausalLM.from_pretrained('TheBloke/MistralLite-7B-GGUF', model_type='mistral', model_file='mistrallite.Q4_K_M.gguf', **vars(gpu_config)) # **asdict(CtransRunConfig_cpu())
|
90 |
-
|
91 |
-
# except:
|
92 |
-
# #model = AutoModelForCausalLM.from_pretrained('Aryanne/Orca-Mini-3B-gguf', model_type='llama', model_file='q5_0-orca-mini-3b.gguf', **vars(cpu_config)) #**asdict(CtransRunConfig_gpu())
|
93 |
-
# #model = AutoModelForCausalLM.from_pretrained('Aryanne/Wizard-Orca-3B-gguf', model_type='llama', model_file='q4_1-wizard-orca-3b.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu())
|
94 |
-
# model = AutoModelForCausalLM.from_pretrained('TheBloke/Mistral-7B-OpenOrca-GGUF', model_type='mistral', model_file='mistral-7b-openorca.Q4_K_M.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu())
|
95 |
-
# #model = AutoModelForCausalLM.from_pretrained('TheBloke/MistralLite-7B-GGUF', model_type='mistral', model_file='mistrallite.Q4_K_M.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu())
|
96 |
-
|
97 |
-
# tokenizer = []
|
98 |
-
|
99 |
-
# if model_type == "Flan Alpaca (small, fast)":
|
100 |
-
# # Huggingface chat model
|
101 |
-
# hf_checkpoint = 'declare-lab/flan-alpaca-large'#'declare-lab/flan-alpaca-base' # # #
|
102 |
-
|
103 |
-
# def create_hf_model(model_name):
|
104 |
-
|
105 |
-
# from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
106 |
-
|
107 |
-
# if torch_device == "cuda":
|
108 |
-
# if "flan" in model_name:
|
109 |
-
# model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
|
110 |
-
# else:
|
111 |
-
# model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
112 |
-
# else:
|
113 |
-
# if "flan" in model_name:
|
114 |
-
# model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
115 |
-
# else:
|
116 |
-
# model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
117 |
-
|
118 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = chatf.context_length)
|
119 |
-
|
120 |
-
# return model, tokenizer, model_type
|
121 |
-
|
122 |
-
# model, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint)
|
123 |
-
|
124 |
-
# chatf.model = model
|
125 |
-
# chatf.tokenizer = tokenizer
|
126 |
-
# chatf.model_type = model_type
|
127 |
-
|
128 |
-
# load_confirmation = "Finished loading model: " + model_type
|
129 |
-
|
130 |
-
# print(load_confirmation)
|
131 |
-
# return model_type, load_confirmation, model_type
|
132 |
-
|
133 |
|
134 |
def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
|
135 |
print("Loading model")
|
|
|
9 |
import pandas as pd
|
10 |
|
11 |
from transformers import AutoTokenizer
|
|
|
|
|
12 |
import torch
|
13 |
|
|
|
14 |
from llama_cpp import Llama
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
|
|
|
56 |
chatf.embeddings = load_embeddings(embeddings_name)
|
57 |
chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"])
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
|
61 |
print("Loading model")
|
chatfuncs/chatfuncs.py
CHANGED
@@ -38,8 +38,6 @@ from gensim.corpora import Dictionary
|
|
38 |
from gensim.models import TfidfModel, OkapiBM25Model
|
39 |
from gensim.similarities import SparseMatrixSimilarity
|
40 |
|
41 |
-
import copy
|
42 |
-
import llama_cpp
|
43 |
from llama_cpp import Llama
|
44 |
from huggingface_hub import hf_hub_download
|
45 |
|
|
|
38 |
from gensim.models import TfidfModel, OkapiBM25Model
|
39 |
from gensim.similarities import SparseMatrixSimilarity
|
40 |
|
|
|
|
|
41 |
from llama_cpp import Llama
|
42 |
from huggingface_hub import hf_hub_download
|
43 |
|