Sean-Case
commited on
Commit
·
275393f
1
Parent(s):
d213c15
Changed embedding model, added reference to chat model on front page
Browse files- Generation speed GPU test.txt +0 -51
- app.py +14 -11
- chatfuncs/chatfuncs.py +24 -15
- chatfuncs/ingest_borough_plan.py +3 -5
- faiss_embedding/faiss_embedding.zip +0 -0
Generation speed GPU test.txt
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
With 5 gpu layers, batch size 8
|
2 |
-
|
3 |
-
Num of generated tokens: 113
|
4 |
-
Time for complete generation: 115.42684650421143s
|
5 |
-
Tokens per secound: 0.9789750255013432
|
6 |
-
Time per token: 1021.4765177363843ms
|
7 |
-
|
8 |
-
With 5 gpu layers, batch size 512
|
9 |
-
|
10 |
-
Num of generated tokens: 102
|
11 |
-
Time for complete generation: 40.369266986846924s
|
12 |
-
Tokens per secound: 2.5266745624396285
|
13 |
-
Time per token: 395.77712732202866ms
|
14 |
-
|
15 |
-
With 6 gpu layers -
|
16 |
-
|
17 |
-
Num of generated tokens: 113
|
18 |
-
Time for complete generation: 46.37785983085632s
|
19 |
-
Tokens per secound: 2.4365074285902764
|
20 |
-
Time per token: 410.42353832616215ms
|
21 |
-
|
22 |
-
With 6 gpu layers, batch size 1024 -
|
23 |
-
Five pillars Q:
|
24 |
-
Num of generated tokens: 102
|
25 |
-
Time for complete generation: 41.85241961479187s
|
26 |
-
Tokens per secound: 2.4371350793766346
|
27 |
-
Time per token: 410.31783936070457ms
|
28 |
-
|
29 |
-
With 8 threads
|
30 |
-
Num of generated tokens: 102
|
31 |
-
Time for complete generation: 40.64410996437073s
|
32 |
-
Tokens per secound: 2.5095887224351774
|
33 |
-
Time per token: 398.4716663173601ms
|
34 |
-
|
35 |
-
Vision statement Q:
|
36 |
-
Num of generated tokens: 84
|
37 |
-
Time for complete generation: 35.57932233810425s
|
38 |
-
Tokens per secound: 2.360921863597128
|
39 |
-
Time per token: 423.5633611679077ms
|
40 |
-
|
41 |
-
Commitments Q:
|
42 |
-
Num of generated tokens: 50
|
43 |
-
Time for complete generation: 23.73319172859192s
|
44 |
-
Tokens per secound: 2.106754142965266
|
45 |
-
Time per token: 474.6638345718384ms
|
46 |
-
|
47 |
-
Outcomes Q
|
48 |
-
Num of generated tokens: 167
|
49 |
-
Time for complete generation: 52.302518367767334s
|
50 |
-
Tokens per secound: 3.1929628861412094
|
51 |
-
Time per token: 313.1887327411217ms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -28,7 +28,7 @@ import chatfuncs.ingest as ing
|
|
28 |
|
29 |
## Load preset embeddings, vectorstore, and model
|
30 |
|
31 |
-
embeddings_name = "
|
32 |
|
33 |
def load_embeddings(embeddings_name = "thenlper/gte-base"):
|
34 |
|
@@ -79,7 +79,7 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
|
|
79 |
if torch_device is None:
|
80 |
torch_device = chatf.torch_device
|
81 |
|
82 |
-
if model_type == "Orca Mini":
|
83 |
|
84 |
gpu_config.update_gpu(gpu_layers)
|
85 |
cpu_config.update_gpu(gpu_layers)
|
@@ -103,7 +103,7 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
|
|
103 |
|
104 |
tokenizer = []
|
105 |
|
106 |
-
if model_type == "Flan Alpaca":
|
107 |
# Huggingface chat model
|
108 |
hf_checkpoint = 'declare-lab/flan-alpaca-large'
|
109 |
|
@@ -135,14 +135,14 @@ def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_d
|
|
135 |
load_confirmation = "Finished loading model: " + model_type
|
136 |
|
137 |
print(load_confirmation)
|
138 |
-
return model_type, load_confirmation
|
139 |
|
140 |
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
|
141 |
-
model_type = "Orca Mini"
|
142 |
|
143 |
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
|
144 |
|
145 |
-
model_type = "Flan Alpaca"
|
146 |
load_model(model_type, 0, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
|
147 |
|
148 |
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
|
@@ -181,16 +181,19 @@ with block:
|
|
181 |
|
182 |
gr.Markdown("<h1><center>Lightweight PDF / web page QA bot</center></h1>")
|
183 |
|
184 |
-
gr.Markdown("Chat with PDF or web page documents. The default is a small model (Flan Alpaca), that can only answer specific questions that are answered in the text. It cannot give overall impressions of, or summarise the document. The alternative (Orca Mini), can reason a little better, but is much slower (See Advanced tab).\n\nBy default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page, please select from the second tab. If switching topic, please click the 'Clear chat' button.\n\nCaution: This is a public app. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.")
|
185 |
|
186 |
-
|
|
|
|
|
187 |
|
188 |
with gr.Tab("Chatbot"):
|
189 |
|
190 |
with gr.Row():
|
191 |
chat_height = 500
|
192 |
chatbot = gr.Chatbot(height=chat_height, avatar_images=('user.jfif', 'bot.jpg'),bubble_full_width = False, scale = 1)
|
193 |
-
sources = gr.HTML(value = "Source paragraphs
|
|
|
194 |
|
195 |
with gr.Row():
|
196 |
message = gr.Textbox(
|
@@ -228,7 +231,7 @@ with block:
|
|
228 |
ingest_embed_out = gr.Textbox(label="File/webpage preparation progress")
|
229 |
|
230 |
with gr.Tab("Advanced features"):
|
231 |
-
model_choice = gr.Radio(label="Choose a chat model", value="Flan Alpaca", choices = ["Flan Alpaca", "Orca Mini"])
|
232 |
with gr.Row():
|
233 |
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU (WARNING: please don't modify unless you have a GPU).", value=0, minimum=0, maximum=6, step = 1, visible=False)
|
234 |
change_model_button = gr.Button(value="Load model", scale=0)
|
@@ -241,7 +244,7 @@ with block:
|
|
241 |
examples_set.change(fn=chatf.update_message, inputs=[examples_set], outputs=[message])
|
242 |
|
243 |
change_model_button.click(fn=chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
|
244 |
-
then(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text]).\
|
245 |
then(lambda: chatf.restore_interactivity(), None, [message], queue=False).\
|
246 |
then(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic]).\
|
247 |
then(lambda: None, None, chatbot, queue=False)
|
|
|
28 |
|
29 |
## Load preset embeddings, vectorstore, and model
|
30 |
|
31 |
+
embeddings_name = "BAAI/bge-base-en-v1.5"
|
32 |
|
33 |
def load_embeddings(embeddings_name = "thenlper/gte-base"):
|
34 |
|
|
|
79 |
if torch_device is None:
|
80 |
torch_device = chatf.torch_device
|
81 |
|
82 |
+
if model_type == "Orca Mini (larger, slow)":
|
83 |
|
84 |
gpu_config.update_gpu(gpu_layers)
|
85 |
cpu_config.update_gpu(gpu_layers)
|
|
|
103 |
|
104 |
tokenizer = []
|
105 |
|
106 |
+
if model_type == "Flan Alpaca (small, fast)":
|
107 |
# Huggingface chat model
|
108 |
hf_checkpoint = 'declare-lab/flan-alpaca-large'
|
109 |
|
|
|
135 |
load_confirmation = "Finished loading model: " + model_type
|
136 |
|
137 |
print(load_confirmation)
|
138 |
+
return model_type, load_confirmation, model_type
|
139 |
|
140 |
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
|
141 |
+
model_type = "Orca Mini (larger, slow)"
|
142 |
|
143 |
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
|
144 |
|
145 |
+
model_type = "Flan Alpaca (small, fast)"
|
146 |
load_model(model_type, 0, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
|
147 |
|
148 |
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
|
|
|
181 |
|
182 |
gr.Markdown("<h1><center>Lightweight PDF / web page QA bot</center></h1>")
|
183 |
|
184 |
+
gr.Markdown("Chat with PDF or web page documents. The default is a small model (Flan Alpaca), that can only answer specific questions that are answered in the text. It cannot give overall impressions of, or summarise the document. The alternative (Orca Mini (larger, slow)), can reason a little better, but is much slower (See Advanced tab).\n\nBy default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page, please select from the second tab. If switching topic, please click the 'Clear chat' button.\n\nCaution: This is a public app. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.")
|
185 |
|
186 |
+
with gr.Row():
|
187 |
+
current_source = gr.Textbox(label="Current data source(s)", value="Lambeth_2030-Our_Future_Our_Lambeth.pdf", scale = 10)
|
188 |
+
current_model = gr.Textbox(label="Current model", value=model_type, scale = 3)
|
189 |
|
190 |
with gr.Tab("Chatbot"):
|
191 |
|
192 |
with gr.Row():
|
193 |
chat_height = 500
|
194 |
chatbot = gr.Chatbot(height=chat_height, avatar_images=('user.jfif', 'bot.jpg'),bubble_full_width = False, scale = 1)
|
195 |
+
#sources = gr.HTML(value = "Source paragraphs with the most relevant text will appear here", height=chat_height, scale = 2)
|
196 |
+
sources = gr.Markdown(value = "Source paragraphs with the most relevant text will appear here", height=chat_height, scale = 2)
|
197 |
|
198 |
with gr.Row():
|
199 |
message = gr.Textbox(
|
|
|
231 |
ingest_embed_out = gr.Textbox(label="File/webpage preparation progress")
|
232 |
|
233 |
with gr.Tab("Advanced features"):
|
234 |
+
model_choice = gr.Radio(label="Choose a chat model", value="Flan Alpaca (small, fast)", choices = ["Flan Alpaca (small, fast)", "Orca Mini (larger, slow)"])
|
235 |
with gr.Row():
|
236 |
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU (WARNING: please don't modify unless you have a GPU).", value=0, minimum=0, maximum=6, step = 1, visible=False)
|
237 |
change_model_button = gr.Button(value="Load model", scale=0)
|
|
|
244 |
examples_set.change(fn=chatf.update_message, inputs=[examples_set], outputs=[message])
|
245 |
|
246 |
change_model_button.click(fn=chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\
|
247 |
+
then(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model]).\
|
248 |
then(lambda: chatf.restore_interactivity(), None, [message], queue=False).\
|
249 |
then(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic]).\
|
250 |
then(lambda: None, None, chatbot, queue=False)
|
chatfuncs/chatfuncs.py
CHANGED
@@ -7,7 +7,7 @@ import pandas as pd
|
|
7 |
import numpy as np
|
8 |
|
9 |
# Model packages
|
10 |
-
import torch
|
11 |
from threading import Thread
|
12 |
from transformers import pipeline, TextIteratorStreamer
|
13 |
|
@@ -21,16 +21,16 @@ from langchain.retrievers import SVMRetriever
|
|
21 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
from langchain.docstore.document import Document
|
23 |
|
24 |
-
# For keyword extraction
|
25 |
-
import nltk
|
26 |
-
nltk.download('wordnet')
|
27 |
from nltk.corpus import stopwords
|
28 |
from nltk.tokenize import RegexpTokenizer
|
29 |
from nltk.stem import WordNetLemmatizer
|
30 |
-
import
|
31 |
|
32 |
# For Name Entity Recognition model
|
33 |
-
from span_marker import SpanMarkerModel
|
34 |
|
35 |
# For BM25 retrieval
|
36 |
from gensim.corpora import Dictionary
|
@@ -60,7 +60,7 @@ hlt_strat = [" ", ". ", "! ", "? ", ": ", "\n\n", "\n", ", "]
|
|
60 |
hlt_overlap = 4
|
61 |
|
62 |
## Initialise NER model ##
|
63 |
-
ner_model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd")
|
64 |
|
65 |
## Initialise keyword model ##
|
66 |
# Used to pull out keywords from chat history to add to user queries behind the scenes
|
@@ -78,7 +78,7 @@ print("Running on device:", torch_device)
|
|
78 |
threads = 8 #torch.get_num_threads()
|
79 |
print("CPU threads:", threads)
|
80 |
|
81 |
-
# Flan Alpaca Model parameters
|
82 |
temperature: float = 0.1
|
83 |
top_k: int = 3
|
84 |
top_p: float = 1
|
@@ -202,7 +202,7 @@ def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
|
|
202 |
|
203 |
# Prompt functions
|
204 |
|
205 |
-
def base_prompt_templates(model_type = "Flan Alpaca"):
|
206 |
|
207 |
#EXAMPLE_PROMPT = PromptTemplate(
|
208 |
# template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n",
|
@@ -313,9 +313,9 @@ QUESTION: {question}
|
|
313 |
### RESPONSE:
|
314 |
"""
|
315 |
|
316 |
-
if model_type == "Flan Alpaca":
|
317 |
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_alpaca, input_variables=['question', 'summaries'])
|
318 |
-
elif model_type == "Orca Mini":
|
319 |
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_wizard_orca, input_variables=['question', 'summaries'])
|
320 |
|
321 |
return INSTRUCTION_PROMPT, CONTENT_PROMPT
|
@@ -359,6 +359,9 @@ def generate_expanded_prompt(inputs: Dict[str, str], instruction_prompt, content
|
|
359 |
|
360 |
def create_full_prompt(user_input, history, extracted_memory, vectorstore, embeddings, model_type):
|
361 |
|
|
|
|
|
|
|
362 |
#if chain_agent is None:
|
363 |
# history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)"))
|
364 |
# return history, history, "", ""
|
@@ -385,7 +388,13 @@ def create_full_prompt(user_input, history, extracted_memory, vectorstore, embed
|
|
385 |
def produce_streaming_answer_chatbot(history, full_prompt, model_type):
|
386 |
#print("Model type is: ", model_type)
|
387 |
|
388 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
# Get the model and tokenizer, and tokenize the user text.
|
390 |
model_inputs = tokenizer(text=full_prompt, return_tensors="pt", return_attention_mask=False).to(torch_device) # return_attention_mask=False was added
|
391 |
|
@@ -425,7 +434,7 @@ def produce_streaming_answer_chatbot(history, full_prompt, model_type):
|
|
425 |
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
|
426 |
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
|
427 |
|
428 |
-
elif model_type == "Orca Mini":
|
429 |
tokens = model.tokenize(full_prompt)
|
430 |
|
431 |
gen_config = CtransGenGenerationConfig()
|
@@ -460,7 +469,7 @@ def adapt_q_from_chat_history(question, chat_history, extracted_memory, keyword_
|
|
460 |
|
461 |
if chat_history_str:
|
462 |
# Keyword extraction is now done in the add_inputs_to_history function
|
463 |
-
|
464 |
|
465 |
|
466 |
new_question_kworded = str(extracted_memory) + ". " + question #+ " " + new_question_keywords
|
@@ -966,7 +975,7 @@ def keybert_keywords(text, n, kw_model):
|
|
966 |
tokens_lemma = apply_lemmatize(text)
|
967 |
lemmatised_text = ' '.join(tokens_lemma)
|
968 |
|
969 |
-
keywords_text =
|
970 |
keyphrase_ngram_range=(1, 1))
|
971 |
keywords_list = [item[0] for item in keywords_text]
|
972 |
|
|
|
7 |
import numpy as np
|
8 |
|
9 |
# Model packages
|
10 |
+
import torch.cuda
|
11 |
from threading import Thread
|
12 |
from transformers import pipeline, TextIteratorStreamer
|
13 |
|
|
|
21 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
from langchain.docstore.document import Document
|
23 |
|
24 |
+
# For keyword extraction (not currently used)
|
25 |
+
#import nltk
|
26 |
+
#nltk.download('wordnet')
|
27 |
from nltk.corpus import stopwords
|
28 |
from nltk.tokenize import RegexpTokenizer
|
29 |
from nltk.stem import WordNetLemmatizer
|
30 |
+
from keybert import KeyBERT
|
31 |
|
32 |
# For Name Entity Recognition model
|
33 |
+
#from span_marker import SpanMarkerModel # Not currently used
|
34 |
|
35 |
# For BM25 retrieval
|
36 |
from gensim.corpora import Dictionary
|
|
|
60 |
hlt_overlap = 4
|
61 |
|
62 |
## Initialise NER model ##
|
63 |
+
ner_model = []#SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd") # Not currently used
|
64 |
|
65 |
## Initialise keyword model ##
|
66 |
# Used to pull out keywords from chat history to add to user queries behind the scenes
|
|
|
78 |
threads = 8 #torch.get_num_threads()
|
79 |
print("CPU threads:", threads)
|
80 |
|
81 |
+
# Flan Alpaca (small, fast) Model parameters
|
82 |
temperature: float = 0.1
|
83 |
top_k: int = 3
|
84 |
top_p: float = 1
|
|
|
202 |
|
203 |
# Prompt functions
|
204 |
|
205 |
+
def base_prompt_templates(model_type = "Flan Alpaca (small, fast)"):
|
206 |
|
207 |
#EXAMPLE_PROMPT = PromptTemplate(
|
208 |
# template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n",
|
|
|
313 |
### RESPONSE:
|
314 |
"""
|
315 |
|
316 |
+
if model_type == "Flan Alpaca (small, fast)":
|
317 |
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_alpaca, input_variables=['question', 'summaries'])
|
318 |
+
elif model_type == "Orca Mini (larger, slow)":
|
319 |
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_wizard_orca, input_variables=['question', 'summaries'])
|
320 |
|
321 |
return INSTRUCTION_PROMPT, CONTENT_PROMPT
|
|
|
359 |
|
360 |
def create_full_prompt(user_input, history, extracted_memory, vectorstore, embeddings, model_type):
|
361 |
|
362 |
+
if not user_input.strip():
|
363 |
+
return history, "", ""
|
364 |
+
|
365 |
#if chain_agent is None:
|
366 |
# history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)"))
|
367 |
# return history, history, "", ""
|
|
|
388 |
def produce_streaming_answer_chatbot(history, full_prompt, model_type):
|
389 |
#print("Model type is: ", model_type)
|
390 |
|
391 |
+
#if not full_prompt.strip():
|
392 |
+
# if history is None:
|
393 |
+
# history = []
|
394 |
+
|
395 |
+
# return history
|
396 |
+
|
397 |
+
if model_type == "Flan Alpaca (small, fast)":
|
398 |
# Get the model and tokenizer, and tokenize the user text.
|
399 |
model_inputs = tokenizer(text=full_prompt, return_tensors="pt", return_attention_mask=False).to(torch_device) # return_attention_mask=False was added
|
400 |
|
|
|
434 |
print(f'Tokens per secound: {NUM_TOKENS/time_generate}')
|
435 |
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms')
|
436 |
|
437 |
+
elif model_type == "Orca Mini (larger, slow)":
|
438 |
tokens = model.tokenize(full_prompt)
|
439 |
|
440 |
gen_config = CtransGenGenerationConfig()
|
|
|
469 |
|
470 |
if chat_history_str:
|
471 |
# Keyword extraction is now done in the add_inputs_to_history function
|
472 |
+
#remove_q_stopwords(str(chat_history_first_q) + " " + str(chat_history_first_ans))
|
473 |
|
474 |
|
475 |
new_question_kworded = str(extracted_memory) + ". " + question #+ " " + new_question_keywords
|
|
|
975 |
tokens_lemma = apply_lemmatize(text)
|
976 |
lemmatised_text = ' '.join(tokens_lemma)
|
977 |
|
978 |
+
keywords_text = KeyBERT(model=kw_model).extract_keywords(lemmatised_text, stop_words='english', top_n=n,
|
979 |
keyphrase_ngram_range=(1, 1))
|
980 |
keywords_list = [item[0] for item in keywords_text]
|
981 |
|
chatfuncs/ingest_borough_plan.py
CHANGED
@@ -1,16 +1,14 @@
|
|
1 |
import ingest as ing
|
2 |
-
import pandas as pd
|
3 |
|
4 |
-
|
5 |
-
borough_plan_text = ing.parse_file([open("Lambeth_2030-Our_Future_Our_Lambeth.pdf")])
|
6 |
print("Borough plan text created")
|
7 |
|
8 |
-
|
9 |
|
10 |
borough_plan_docs = ing.text_to_docs(borough_plan_text)
|
11 |
print("Borough plan docs created")
|
12 |
|
13 |
-
embedding_model = "
|
14 |
|
15 |
embeddings = ing.load_embeddings(model_name = embedding_model)
|
16 |
ing.embed_faiss_save_to_zip(borough_plan_docs, save_to="faiss_embedding", model_name = embedding_model)
|
|
|
1 |
import ingest as ing
|
|
|
2 |
|
3 |
+
borough_plan_text, file_names = ing.parse_file([open("Lambeth_2030-Our_Future_Our_Lambeth.pdf")])
|
|
|
4 |
print("Borough plan text created")
|
5 |
|
6 |
+
print(borough_plan_text)
|
7 |
|
8 |
borough_plan_docs = ing.text_to_docs(borough_plan_text)
|
9 |
print("Borough plan docs created")
|
10 |
|
11 |
+
embedding_model = "BAAI/bge-base-en-v1.5"
|
12 |
|
13 |
embeddings = ing.load_embeddings(model_name = embedding_model)
|
14 |
ing.embed_faiss_save_to_zip(borough_plan_docs, save_to="faiss_embedding", model_name = embedding_model)
|
faiss_embedding/faiss_embedding.zip
CHANGED
Binary files a/faiss_embedding/faiss_embedding.zip and b/faiss_embedding/faiss_embedding.zip differ
|
|