|
|
|
|
|
import os |
|
import socket |
|
|
|
from typing import Type |
|
from langchain_huggingface.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
import gradio as gr |
|
import pandas as pd |
|
|
|
from transformers import AutoTokenizer |
|
import torch |
|
|
|
from llama_cpp import Llama |
|
from huggingface_hub import hf_hub_download |
|
from chatfuncs.ingest import embed_faiss_save_to_zip |
|
from chatfuncs.helper_functions import get_or_create_env_var |
|
|
|
from chatfuncs.helper_functions import ensure_output_folder_exists, get_connection_params, output_folder, get_or_create_env_var, reveal_feedback_buttons, wipe_logs |
|
from chatfuncs.aws_functions import upload_file_to_s3 |
|
|
|
from chatfuncs.auth import authenticate_user |
|
|
|
PandasDataFrame = Type[pd.DataFrame] |
|
|
|
from datetime import datetime |
|
today_rev = datetime.now().strftime("%Y%m%d") |
|
|
|
ensure_output_folder_exists() |
|
|
|
host_name = socket.gethostname() |
|
|
|
access_logs_data_folder = 'logs/' + today_rev + '/' + host_name + '/' |
|
feedback_data_folder = 'feedback/' + today_rev + '/' + host_name + '/' |
|
usage_data_folder = 'usage/' + today_rev + '/' + host_name + '/' |
|
|
|
|
|
|
|
|
|
|
|
import chatfuncs.ingest as ing |
|
|
|
|
|
|
|
|
|
|
|
embeddings_name = "BAAI/bge-base-en-v1.5" |
|
|
|
def load_embeddings(embeddings_name = embeddings_name): |
|
|
|
embeddings_func = HuggingFaceEmbeddings(model_name=embeddings_name) |
|
|
|
global embeddings |
|
|
|
embeddings = embeddings_func |
|
|
|
return embeddings |
|
|
|
def get_faiss_store(faiss_vstore_folder,embeddings): |
|
import zipfile |
|
with zipfile.ZipFile(faiss_vstore_folder + '/' + faiss_vstore_folder + '.zip', 'r') as zip_ref: |
|
zip_ref.extractall(faiss_vstore_folder) |
|
|
|
faiss_vstore = FAISS.load_local(folder_path=faiss_vstore_folder, embeddings=embeddings, allow_dangerous_deserialization=True) |
|
os.remove(faiss_vstore_folder + "/index.faiss") |
|
os.remove(faiss_vstore_folder + "/index.pkl") |
|
|
|
global vectorstore |
|
|
|
vectorstore = faiss_vstore |
|
|
|
return vectorstore |
|
|
|
import chatfuncs.chatfuncs as chatf |
|
|
|
chatf.embeddings = load_embeddings(embeddings_name) |
|
chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"]) |
|
|
|
|
|
def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None): |
|
print("Loading model") |
|
|
|
|
|
if gpu_config is None: |
|
gpu_config = chatf.gpu_config |
|
if cpu_config is None: |
|
cpu_config = chatf.cpu_config |
|
if torch_device is None: |
|
torch_device = chatf.torch_device |
|
|
|
if model_type == "Phi 3.5 Mini (larger, slow)": |
|
if torch_device == "cuda": |
|
gpu_config.update_gpu(gpu_layers) |
|
print("Loading with", gpu_config.n_gpu_layers, "model layers sent to GPU.") |
|
else: |
|
gpu_config.update_gpu(gpu_layers) |
|
cpu_config.update_gpu(gpu_layers) |
|
|
|
print("Loading with", cpu_config.n_gpu_layers, "model layers sent to GPU.") |
|
|
|
print(vars(gpu_config)) |
|
print(vars(cpu_config)) |
|
|
|
try: |
|
model = Llama( |
|
model_path=hf_hub_download( |
|
repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3.5-mini-instruct-GGUF"), |
|
filename=os.environ.get("MODEL_FILE", "Phi-3.5-mini-instruct.Q4_K_M.gguf") |
|
), |
|
**vars(gpu_config) |
|
) |
|
|
|
except Exception as e: |
|
print("GPU load failed") |
|
print(e) |
|
model = Llama( |
|
model_path=hf_hub_download( |
|
repo_id=os.environ.get("REPO_ID", "QuantFactory/Phi-3.5-mini-instruct-GGUF"), |
|
filename=os.environ.get("MODEL_FILE", "Phi-3.5-mini-instruct.Q4_K_M.gguf"), |
|
), |
|
**vars(cpu_config) |
|
) |
|
|
|
tokenizer = [] |
|
|
|
if model_type == "Qwen 2 0.5B (small, fast)": |
|
|
|
hf_checkpoint = 'Qwen/Qwen2-0.5B-Instruct' |
|
|
|
def create_hf_model(model_name): |
|
|
|
from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM |
|
|
|
if torch_device == "cuda": |
|
if "flan" in model_name: |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto") |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") |
|
else: |
|
if "flan" in model_name: |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = chatf.context_length) |
|
|
|
return model, tokenizer, model_type |
|
|
|
model, tokenizer, model_type = create_hf_model(model_name = hf_checkpoint) |
|
|
|
chatf.model = model |
|
chatf.tokenizer = tokenizer |
|
chatf.model_type = model_type |
|
|
|
load_confirmation = "Finished loading model: " + model_type |
|
|
|
print(load_confirmation) |
|
return model_type, load_confirmation, model_type |
|
|
|
|
|
|
|
|
|
|
|
model_type = "Qwen 2 0.5B (small, fast)" |
|
load_model(model_type, 0, chatf.gpu_config, chatf.cpu_config, chatf.torch_device) |
|
|
|
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings): |
|
|
|
print(f"> Total split documents: {len(docs_out)}") |
|
|
|
print(docs_out) |
|
|
|
vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings) |
|
|
|
chatf.vectorstore = vectorstore_func |
|
|
|
out_message = "Document processing complete" |
|
|
|
return out_message, vectorstore_func |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app = gr.Blocks(theme = gr.themes.Base()) |
|
|
|
with app: |
|
ingest_text = gr.State() |
|
ingest_metadata = gr.State() |
|
ingest_docs = gr.State() |
|
|
|
model_type_state = gr.State(model_type) |
|
embeddings_state = gr.State(chatf.embeddings) |
|
vectorstore_state = gr.State(chatf.vectorstore) |
|
|
|
relevant_query_state = gr.Checkbox(value=True, visible=False) |
|
|
|
model_state = gr.State() |
|
tokenizer_state = gr.State() |
|
|
|
chat_history_state = gr.State() |
|
instruction_prompt_out = gr.State() |
|
|
|
session_hash_state = gr.State() |
|
s3_output_folder_state = gr.State() |
|
|
|
session_hash_textbox = gr.Textbox(value="", visible=False) |
|
s3_logs_output_textbox = gr.Textbox(label="S3 logs", visible=False) |
|
|
|
access_logs_state = gr.State(access_logs_data_folder + 'dataset1.csv') |
|
access_s3_logs_loc_state = gr.State(access_logs_data_folder) |
|
usage_logs_state = gr.State(usage_data_folder + 'dataset1.csv') |
|
usage_s3_logs_loc_state = gr.State(usage_data_folder) |
|
feedback_logs_state = gr.State(feedback_data_folder + 'dataset1.csv') |
|
feedback_s3_logs_loc_state = gr.State(feedback_data_folder) |
|
|
|
gr.Markdown("<h1><center>Lightweight PDF / web page QA bot</center></h1>") |
|
|
|
gr.Markdown("Chat with PDF, web page or (new) csv/Excel documents. The default is a small model (Qwen 2 0.5B), that can only answer specific questions that are answered in the text. It cannot give overall impressions of, or summarise the document. The alternative (Phi 3.5 Mini (larger, slow)), can reason a little better, but is much slower (See Advanced tab).\n\nBy default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page, please select from the second tab. If switching topic, please click the 'Clear chat' button.\n\nCaution: This is a public app. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.") |
|
|
|
with gr.Accordion(label="Use Gemini or AWS Claude model", open=False, visible=False): |
|
api_model_choice = gr.Dropdown(value = "None", choices = ["gemini-1.5-flash-002", "gemini-1.5-pro-002", "anthropic.claude-3-haiku-20240307-v1:0", "anthropic.claude-3-sonnet-20240229-v1:0", "None"], label="LLM model to use", multiselect=False, interactive=True, visible=False) |
|
in_api_key = gr.Textbox(value = "", label="Enter Gemini API key (only if using Google API models)", lines=1, type="password",interactive=True, visible=False) |
|
|
|
with gr.Row(): |
|
current_source = gr.Textbox(label="Current data source(s)", value="Lambeth_2030-Our_Future_Our_Lambeth.pdf", scale = 10) |
|
current_model = gr.Textbox(label="Current model", value=model_type, scale = 3) |
|
|
|
with gr.Tab("Chatbot"): |
|
|
|
with gr.Row(): |
|
|
|
chatbot = gr.Chatbot(avatar_images=('user.jfif', 'bot.jpg'),bubble_full_width = False, scale = 1, type='tuples') |
|
with gr.Accordion("Open this tab to see the source paragraphs used to generate the answer", open = False): |
|
sources = gr.HTML(value = "Source paragraphs with the most relevant text will appear here") |
|
|
|
with gr.Row(): |
|
message = gr.Textbox( |
|
label="Enter your question here", |
|
lines=1, |
|
) |
|
with gr.Row(): |
|
submit = gr.Button(value="Send message", variant="secondary", scale = 1) |
|
clear = gr.Button(value="Clear chat", variant="secondary", scale=0) |
|
stop = gr.Button(value="Stop generating", variant="secondary", scale=0) |
|
|
|
examples_set = gr.Radio(label="Examples for the Lambeth Borough Plan", |
|
|
|
choices=["What were the five pillars of the previous borough plan?", |
|
"What is the vision statement for Lambeth?", |
|
"What are the commitments for Lambeth?", |
|
"What are the 2030 outcomes for Lambeth?"]) |
|
|
|
current_topic = gr.Textbox(label="Feature currently disabled - Keywords related to current conversation topic.", placeholder="Keywords related to the conversation topic will appear here") |
|
|
|
|
|
with gr.Tab("Load in a different file to chat with"): |
|
with gr.Accordion("PDF file", open = False): |
|
in_pdf = gr.File(label="Upload pdf", file_count="multiple", file_types=['.pdf']) |
|
load_pdf = gr.Button(value="Load in file", variant="secondary", scale=0) |
|
|
|
with gr.Accordion("Web page", open = False): |
|
with gr.Row(): |
|
in_web = gr.Textbox(label="Enter web page url") |
|
in_div = gr.Textbox(label="(Advanced) Web page div for text extraction", value="p", placeholder="p") |
|
load_web = gr.Button(value="Load in webpage", variant="secondary", scale=0) |
|
|
|
with gr.Accordion("CSV/Excel file", open = False): |
|
in_csv = gr.File(label="Upload CSV/Excel file", file_count="multiple", file_types=['.csv', '.xlsx']) |
|
in_text_column = gr.Textbox(label="Enter column name where text is stored") |
|
load_csv = gr.Button(value="Load in CSV/Excel file", variant="secondary", scale=0) |
|
|
|
with gr.Row(): |
|
ingest_embed_out = gr.Textbox(label="File/web page preparation progress") |
|
file_out_box = gr.File(file_count='single', file_types=['.zip']) |
|
|
|
with gr.Tab("Advanced features"): |
|
out_passages = gr.Slider(minimum=1, value = 2, maximum=10, step=1, label="Choose number of passages to retrieve from the document. Numbers greater than 2 may lead to increased hallucinations or input text being truncated.") |
|
temp_slide = gr.Slider(minimum=0.1, value = 0.5, maximum=1, step=0.1, label="Choose temperature setting for response generation.") |
|
with gr.Row(): |
|
model_choice = gr.Radio(label="Choose a chat model", value="Qwen 2 0.5B (small, fast)", choices = ["Qwen 2 0.5B (small, fast)", "Phi 3.5 Mini (larger, slow)"]) |
|
change_model_button = gr.Button(value="Load model", scale=0) |
|
with gr.Accordion("Choose number of model layers to send to GPU (WARNING: please don't modify unless you are sure you have a GPU).", open = False): |
|
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU.", value=0, minimum=0, maximum=100, step = 1, visible=True) |
|
|
|
load_text = gr.Text(label="Load status") |
|
|
|
|
|
gr.HTML( |
|
"<center>This app is based on the models Qwen 2 0.5B and Phi 3.5 Mini. It powered by Gradio, Transformers, and Llama.cpp.</a></center>" |
|
) |
|
|
|
examples_set.change(fn=chatf.update_message, inputs=[examples_set], outputs=[message]) |
|
|
|
change_model_button.click(fn=chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\ |
|
then(fn=load_model, inputs=[model_choice, gpu_layer_choice], outputs = [model_type_state, load_text, current_model]).\ |
|
then(lambda: chatf.restore_interactivity(), None, [message], queue=False).\ |
|
then(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic]).\ |
|
then(lambda: None, None, chatbot, queue=False) |
|
|
|
|
|
load_pdf_click = load_pdf.click(ing.parse_file, inputs=[in_pdf], outputs=[ingest_text, current_source]).\ |
|
then(ing.text_to_docs, inputs=[ingest_text], outputs=[ingest_docs]).\ |
|
then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\ |
|
then(chatf.hide_block, outputs = [examples_set]) |
|
|
|
|
|
load_web_click = load_web.click(ing.parse_html, inputs=[in_web, in_div], outputs=[ingest_text, ingest_metadata, current_source]).\ |
|
then(ing.html_text_to_docs, inputs=[ingest_text, ingest_metadata], outputs=[ingest_docs]).\ |
|
then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\ |
|
then(chatf.hide_block, outputs = [examples_set]) |
|
|
|
|
|
load_csv_click = load_csv.click(ing.parse_csv_or_excel, inputs=[in_csv, in_text_column], outputs=[ingest_text, current_source]).\ |
|
then(ing.csv_excel_text_to_docs, inputs=[ingest_text, in_text_column], outputs=[ingest_docs]).\ |
|
then(embed_faiss_save_to_zip, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state, file_out_box]).\ |
|
then(chatf.hide_block, outputs = [examples_set]) |
|
|
|
|
|
|
|
|
|
response_click = submit.click(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages, api_model_choice, in_api_key], outputs=[chat_history_state, sources, instruction_prompt_out, relevant_query_state], queue=False, api_name="retrieval").\ |
|
then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\ |
|
then(chatf.produce_streaming_answer_chatbot, inputs=[chatbot, instruction_prompt_out, model_type_state, temp_slide, relevant_query_state], outputs=chatbot) |
|
response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\ |
|
then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\ |
|
then(lambda: chatf.restore_interactivity(), None, [message], queue=False) |
|
|
|
response_enter = message.submit(chatf.create_full_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state, model_type_state, out_passages, api_model_choice, in_api_key], outputs=[chat_history_state, sources, instruction_prompt_out, relevant_query_state], queue=False).\ |
|
then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\ |
|
then(chatf.produce_streaming_answer_chatbot, [chatbot, instruction_prompt_out, model_type_state, temp_slide, relevant_query_state], chatbot) |
|
response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\ |
|
then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\ |
|
then(lambda: chatf.restore_interactivity(), None, [message], queue=False) |
|
|
|
|
|
stop.click(fn=None, inputs=None, outputs=None, cancels=[response_click, response_enter]) |
|
|
|
|
|
clear.click(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic]) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
|
|
chatbot.like(chatf.vote, [chat_history_state, instruction_prompt_out, model_type_state], None) |
|
|
|
|
|
|
|
|
|
app.load(get_connection_params, inputs=None, outputs=[session_hash_state, s3_output_folder_state, session_hash_textbox]) |
|
|
|
|
|
access_callback = gr.CSVLogger() |
|
access_callback.setup([session_hash_textbox], access_logs_data_folder) |
|
|
|
session_hash_textbox.change(lambda *args: access_callback.flag(list(args)), [session_hash_textbox], None, preprocess=False).\ |
|
then(fn = upload_file_to_s3, inputs=[access_logs_state, access_s3_logs_loc_state], outputs=[s3_logs_output_textbox]) |
|
|
|
|
|
COGNITO_AUTH = get_or_create_env_var('COGNITO_AUTH', '0') |
|
print(f'The value of COGNITO_AUTH is {COGNITO_AUTH}') |
|
|
|
if __name__ == "__main__": |
|
if os.environ['COGNITO_AUTH'] == "1": |
|
app.queue().launch(show_error=True, auth=authenticate_user, max_file_size='50mb') |
|
else: |
|
app.queue().launch(show_error=True, inbrowser=True, max_file_size='50mb') |