|
|
|
|
|
|
|
import os |
|
from typing import TypeVar |
|
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings |
|
from langchain.vectorstores import FAISS |
|
|
|
|
|
|
|
PandasDataFrame = TypeVar('pd.core.frame.DataFrame') |
|
|
|
|
|
|
|
|
|
|
|
|
|
import chatfuncs.ingest as ing |
|
|
|
|
|
|
|
embeddings_name = "thenlper/gte-base" |
|
|
|
def load_embeddings(embeddings_name = "thenlper/gte-base"): |
|
|
|
|
|
if embeddings_name == "hkunlp/instructor-large": |
|
embeddings_func = HuggingFaceInstructEmbeddings(model_name=embeddings_name, |
|
embed_instruction="Represent the paragraph for retrieval: ", |
|
query_instruction="Represent the question for retrieving supporting documents: " |
|
) |
|
|
|
else: |
|
embeddings_func = HuggingFaceEmbeddings(model_name=embeddings_name) |
|
|
|
global embeddings |
|
|
|
embeddings = embeddings_func |
|
|
|
return embeddings |
|
|
|
def get_faiss_store(faiss_vstore_folder,embeddings): |
|
import zipfile |
|
with zipfile.ZipFile(faiss_vstore_folder + '/' + faiss_vstore_folder + '.zip', 'r') as zip_ref: |
|
zip_ref.extractall(faiss_vstore_folder) |
|
|
|
faiss_vstore = FAISS.load_local(folder_path=faiss_vstore_folder, embeddings=embeddings) |
|
os.remove(faiss_vstore_folder + "/index.faiss") |
|
os.remove(faiss_vstore_folder + "/index.pkl") |
|
|
|
global vectorstore |
|
|
|
vectorstore = faiss_vstore |
|
|
|
return vectorstore |
|
|
|
import chatfuncs.chatfuncs as chatf |
|
|
|
chatf.embeddings = load_embeddings(embeddings_name) |
|
chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"]) |
|
|
|
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings): |
|
|
|
print(f"> Total split documents: {len(docs_out)}") |
|
|
|
print(docs_out) |
|
|
|
vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings) |
|
|
|
''' |
|
#with open("vectorstore.pkl", "wb") as f: |
|
#pickle.dump(vectorstore, f) |
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chatf.vectorstore = vectorstore_func |
|
|
|
out_message = "Document processing complete" |
|
|
|
|
|
|
|
|
|
return out_message, vectorstore_func |
|
|
|
|
|
|
|
import gradio as gr |
|
|
|
|
|
block = gr.Blocks(theme = gr.themes.Base()) |
|
|
|
with block: |
|
ingest_text = gr.State() |
|
ingest_metadata = gr.State() |
|
ingest_docs = gr.State() |
|
|
|
embeddings_state = gr.State(globals()["embeddings"]) |
|
vectorstore_state = gr.State(globals()["vectorstore"]) |
|
|
|
chat_history_state = gr.State() |
|
instruction_prompt_out = gr.State() |
|
|
|
gr.Markdown("<h1><center>Lightweight PDF / web page QA bot</center></h1>") |
|
|
|
gr.Markdown("Chat with a document (alpha). This is a small model, that can only answer specific questions that are answered in the text. It cannot give overall impressions of, or summarise the document. By default the Lambeth Borough Plan '[Lambeth 2030 : Our Future, Our Lambeth](https://www.lambeth.gov.uk/better-fairer-lambeth/projects/lambeth-2030-our-future-our-lambeth)' is loaded. If you want to talk about another document or web page, please select from the second tab. If switching topic, please click the 'Clear chat' button.\n\nWarnings: This is a public app. Please ensure that the document you upload is not sensitive is any way as other users may see it! Also, please note that LLM chatbots may give incomplete or incorrect information, so please use with care.") |
|
|
|
current_source = gr.Textbox(label="Current data source that is loaded into the app", value="Lambeth_2030-Our_Future_Our_Lambeth.pdf") |
|
|
|
with gr.Tab("Chatbot"): |
|
|
|
with gr.Row(): |
|
chatbot = gr.Chatbot(height=300) |
|
sources = gr.HTML(value = "Source paragraphs where I looked for answers will appear here", height=300) |
|
|
|
with gr.Row(): |
|
message = gr.Textbox( |
|
label="What's your question?", |
|
lines=1, |
|
) |
|
|
|
submit = gr.Button(value="Send message", variant="secondary", scale = 1) |
|
|
|
examples_set = gr.Radio(label="Examples for the Lambeth Borough Plan", |
|
|
|
choices=["What were the five pillars of the previous borough plan?", |
|
"What is the vision statement for Lambeth?", |
|
"What are the commitments for Lambeth?", |
|
"What are the 2030 outcomes for Lambeth?"]) |
|
|
|
with gr.Row(): |
|
current_topic = gr.Textbox(label="Note: Feature currently disabled - Keywords related to current conversation topic. If you want to talk about something else, press 'New topic'", placeholder="Keywords related to the conversation topic will appear here") |
|
clear = gr.Button(value="Clear chat", variant="secondary", scale=0) |
|
|
|
|
|
with gr.Tab("Load in a different PDF file or web page to chat"): |
|
with gr.Accordion("PDF file", open = False): |
|
in_pdf = gr.File(label="Upload pdf", file_count="multiple", file_types=['.pdf']) |
|
load_pdf = gr.Button(value="Load in file", variant="secondary", scale=0) |
|
|
|
with gr.Accordion("Web page", open = False): |
|
with gr.Row(): |
|
in_web = gr.Textbox(label="Enter webpage url") |
|
in_div = gr.Textbox(label="(Advanced) Webpage div for text extraction", value="p", placeholder="p") |
|
load_web = gr.Button(value="Load in webpage", variant="secondary", scale=0) |
|
|
|
ingest_embed_out = gr.Textbox(label="File/webpage preparation progress") |
|
|
|
gr.HTML( |
|
"<center>Powered by Flan Alpaca and Langchain</a></center>" |
|
) |
|
|
|
examples_set.change(fn=chatf.update_message, inputs=[examples_set], outputs=[message]) |
|
|
|
|
|
load_pdf_click = load_pdf.click(ing.parse_file, inputs=[in_pdf], outputs=[ingest_text, current_source]).\ |
|
then(ing.text_to_docs, inputs=[ingest_text], outputs=[ingest_docs]).\ |
|
then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]).\ |
|
then(chatf.hide_block, outputs = [examples_set]) |
|
|
|
|
|
load_web_click = load_web.click(ing.parse_html, inputs=[in_web, in_div], outputs=[ingest_text, ingest_metadata, current_source]).\ |
|
then(ing.html_text_to_docs, inputs=[ingest_text, ingest_metadata], outputs=[ingest_docs]).\ |
|
then(docs_to_faiss_save, inputs=[ingest_docs], outputs=[ingest_embed_out, vectorstore_state]).\ |
|
then(chatf.hide_block, outputs = [examples_set]) |
|
|
|
|
|
|
|
|
|
response_click = submit.click(chatf.get_history_sources_final_input_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False, api_name="retrieval").\ |
|
then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\ |
|
then(chatf.produce_streaming_answer_chatbot_hf, inputs=[chatbot, instruction_prompt_out], outputs=chatbot) |
|
response_click.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\ |
|
then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\ |
|
then(lambda: gr.update(interactive=True), None, [message], queue=False) |
|
|
|
response_enter = message.submit(chatf.get_history_sources_final_input_prompt, inputs=[message, chat_history_state, current_topic, vectorstore_state, embeddings_state], outputs=[chat_history_state, sources, instruction_prompt_out], queue=False).\ |
|
then(chatf.turn_off_interactivity, inputs=[message, chatbot], outputs=[message, chatbot], queue=False).\ |
|
then(chatf.produce_streaming_answer_chatbot_hf, [chatbot, instruction_prompt_out], chatbot) |
|
response_enter.then(chatf.highlight_found_text, [chatbot, sources], [sources]).\ |
|
then(chatf.add_inputs_answer_to_history,[message, chatbot, current_topic], [chat_history_state, current_topic]).\ |
|
then(lambda: gr.update(interactive=True), None, [message], queue=False) |
|
|
|
|
|
clear.click(chatf.clear_chat, inputs=[chat_history_state, sources, message, current_topic], outputs=[chat_history_state, sources, message, current_topic]) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
block.queue(concurrency_count=1).launch(debug=True) |
|
|
|
|
|
|