# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # Hyperparameters when using Albumentations frameworks # python train.py --hyp hyp.no-augmentation.yaml # See https://github.com/ultralytics/yolov5/pull/3882 for YOLOv5 + Albumentations Usage examples lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf) momentum: 0.937 # SGD momentum/Adam beta1 weight_decay: 0.0005 # optimizer weight decay 5e-4 warmup_epochs: 3.0 # warmup epochs (fractions ok) warmup_momentum: 0.8 # warmup initial momentum warmup_bias_lr: 0.1 # warmup initial bias lr box: 0.05 # box loss gain cls: 0.3 # cls loss gain cls_pw: 1.0 # cls BCELoss positive_weight obj: 0.7 # obj loss gain (scale with pixels) obj_pw: 1.0 # obj BCELoss positive_weight iou_t: 0.20 # IoU training threshold anchor_t: 4.0 # anchor-multiple threshold # anchors: 3 # anchors per output layer (0 to ignore) # this parameters are all zero since we want to use albumentation framework fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) hsv_h: 0 # image HSV-Hue augmentation (fraction) hsv_s: 00 # image HSV-Saturation augmentation (fraction) hsv_v: 0 # image HSV-Value augmentation (fraction) degrees: 0.0 # image rotation (+/- deg) translate: 0 # image translation (+/- fraction) scale: 0 # image scale (+/- gain) shear: 0 # image shear (+/- deg) perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 flipud: 0.0 # image flip up-down (probability) fliplr: 0.0 # image flip left-right (probability) mosaic: 0.0 # image mosaic (probability) mixup: 0.0 # image mixup (probability) copy_paste: 0.0 # segment copy-paste (probability)