# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5 # Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference # Start FROM NVIDIA PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch FROM nvcr.io/nvidia/pytorch:22.12-py3 RUN rm -rf /opt/pytorch # remove 1.2GB dir # Downloads to user config dir ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ # Install linux packages RUN apt update && apt install --no-install-recommends -y zip htop screen libgl1-mesa-glx # Install pip packages (uninstall torch nightly in favor of stable) COPY requirements.txt . RUN python -m pip install --upgrade pip wheel RUN pip uninstall -y Pillow torchtext torch torchvision RUN pip install --no-cache -U pycocotools # install --upgrade RUN pip install --no-cache -r requirements.txt albumentations comet gsutil notebook 'opencv-python<4.6.0.66' \ Pillow>=9.1.0 ultralytics \ --extra-index-url https://download.pytorch.org/whl/cu113 # Create working directory RUN mkdir -p /usr/src/app WORKDIR /usr/src/app # Copy contents # COPY . /usr/src/app (issues as not a .git directory) RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app # Set environment variables ENV OMP_NUM_THREADS=1 # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t # Pull and Run # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t # Pull and Run with local directory access # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t # Kill all # sudo docker kill $(sudo docker ps -q) # Kill all image-based # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest) # DockerHub tag update # t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew # Clean up # docker system prune -a --volumes # Update Ubuntu drivers # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/ # DDP test # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3 # GCP VM from Image # docker.io/ultralytics/yolov5:latest