import streamlit as st import torch from detect import detect from PIL import Image from io import * import glob from datetime import datetime import os import wget import time def imageInput(device, src): if src == 'Upload your own data.': image_file = st.file_uploader("Upload An Image", type=['png', 'jpeg', 'jpg']) col1, col2 = st.columns(2) if image_file is not None: img = Image.open(image_file) with col1: st.image(img, caption='Uploaded Image', use_column_width='always') ts = datetime.timestamp(datetime.now()) imgpath = os.path.join('data/uploads', str(ts)+image_file.name) outputpath = os.path.join('data/outputs', os.path.basename(imgpath)) with open(imgpath, mode="wb") as f: f.write(image_file.getbuffer()) #call Model prediction-- model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/YOLOv5m.pt', force_reload=True) model.cuda() if device == 'cuda' else model.cpu() pred = model(imgpath) pred.render() # render bbox in image for im in pred.ims: im_base64 = Image.fromarray(im) im_base64.save(outputpath) #--Display predicton img_ = Image.open(outputpath) with col2: st.image(img_, caption='Model Prediction(s)', use_column_width='always') elif src == 'From test set.': # Image selector slider imgpath = glob.glob('data/images/*') imgsel = st.slider('Select random images from test set.', min_value=1, max_value=len(imgpath), step=1) image_file = imgpath[imgsel-1] submit = st.button("Predict!") col1, col2 = st.columns(2) with col1: img = Image.open(image_file) st.image(img, caption='Selected Image', use_column_width='always') with col2: if image_file is not None and submit: #call Model prediction-- model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/YOLOv5m.pt', force_reload=True) pred = model(image_file) pred.render() # render bbox in image for im in pred.ims: im_base64 = Image.fromarray(im) im_base64.save(os.path.join('data/outputs', os.path.basename(image_file))) #--Display predicton img_ = Image.open(os.path.join('data/outputs', os.path.basename(image_file))) st.image(img_, caption='Model Prediction(s)') def videoInput(device, src): uploaded_video = st.file_uploader("Upload Video", type=['mp4', 'mpeg', 'mov']) if uploaded_video != None: ts = datetime.timestamp(datetime.now()) imgpath = os.path.join('data/uploads', str(ts)+uploaded_video.name) outputpath = os.path.join('data/video_output', os.path.basename(imgpath)) with open(imgpath, mode='wb') as f: f.write(uploaded_video.read()) # save video to disk st_video = open(imgpath, 'rb') video_bytes = st_video.read() st.video(video_bytes) st.write("Uploaded Video") detect(weights="models/yoloTrained.pt", source=imgpath, device=0) if device == 'cuda' else detect(weights="models/YOLOv5m.pt", source=imgpath, device='cpu') st_video2 = open(outputpath, 'rb') video_bytes2 = st_video2.read() st.video(video_bytes2) st.write("Model Prediction") def main(): # -- Sidebar st.sidebar.title('⚙️Options') datasrc = st.sidebar.radio("Select input source.", ['From test set.', 'Upload your own data.']) option = st.sidebar.radio("Select input type.", ['Image', 'Video'], disabled = True) if torch.cuda.is_available(): deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = False, index=1) else: deviceoption = st.sidebar.radio("Select compute Device.", ['cpu', 'cuda'], disabled = True, index=0) # -- End of Sidebar st.header('Unreal Engine 5 Tank Demo') st.subheader('Select the options') if option == "Image": imageInput(deviceoption, datasrc) elif option == "Video": videoInput(deviceoption, datasrc) if __name__ == '__main__': main() @st.cache def loadModel(): start_dl = time.time() model_file = wget.download('https://huggingface.co/sigil-ml/Unreal-Engine-5-Tanks-YOLOv5/blob/main/YOLOv5m.pt', out="models/") finished_dl = time.time() print(f"Model Downloaded, ETA:{finished_dl-start_dl}") loadModel()