Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,103 +1,155 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import threading
|
3 |
import os
|
4 |
-
import torch
|
5 |
|
6 |
os.environ["OMP_NUM_THREADS"] = str(os.cpu_count())
|
7 |
torch.set_num_threads(os.cpu_count())
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
11 |
|
12 |
stop_event = threading.Event()
|
13 |
|
14 |
-
def generate_images(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
stop_event.clear()
|
16 |
-
|
17 |
-
if selected_model == "Model 1 (Turbo Realism)":
|
18 |
-
model = model1
|
19 |
-
elif selected_model == "Model 2 (Face Projection)":
|
20 |
-
model = model2
|
21 |
-
else:
|
22 |
-
return ["Invalid model selection."] * 3
|
23 |
-
|
24 |
-
# Convert seed to integer (handle empty/None)
|
25 |
-
try:
|
26 |
-
seed = int(seed) if seed not in [None, ""] else -1
|
27 |
-
except:
|
28 |
-
seed = -1
|
29 |
-
|
30 |
results = []
|
|
|
31 |
for i in range(3):
|
32 |
if stop_event.is_set():
|
33 |
-
return [
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
height=int(height),
|
41 |
width=int(width),
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
return results
|
47 |
|
48 |
def stop_generation():
|
49 |
-
"""Stops the ongoing image generation by setting the stop_event flag."""
|
50 |
stop_event.set()
|
51 |
-
return [
|
52 |
|
53 |
with gr.Blocks() as interface:
|
54 |
-
gr.Markdown(
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
with gr.Row():
|
59 |
-
text_input = gr.Textbox(
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
value="Model 1 (Turbo Realism)"
|
64 |
)
|
65 |
|
66 |
-
with gr.Accordion("
|
67 |
with gr.Row():
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
with gr.Row():
|
73 |
-
|
74 |
-
|
75 |
-
value=
|
76 |
-
|
77 |
-
allow_custom_value=True
|
78 |
)
|
79 |
-
|
80 |
-
|
81 |
-
value=
|
82 |
-
label="Height",
|
83 |
-
allow_custom_value=True
|
84 |
)
|
85 |
-
|
86 |
with gr.Row():
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
with gr.Row():
|
91 |
-
output1 = gr.Image(label="
|
92 |
-
output2 = gr.Image(label="
|
93 |
-
output3 = gr.Image(label="
|
94 |
|
95 |
-
|
96 |
generate_images,
|
97 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
outputs=[output1, output2, output3]
|
99 |
)
|
100 |
-
|
|
|
101 |
stop_generation,
|
102 |
inputs=[],
|
103 |
outputs=[output1, output2, output3]
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import FluxPipeline
|
3 |
import gradio as gr
|
4 |
import threading
|
5 |
import os
|
|
|
6 |
|
7 |
os.environ["OMP_NUM_THREADS"] = str(os.cpu_count())
|
8 |
torch.set_num_threads(os.cpu_count())
|
9 |
|
10 |
+
# Initialize Flux pipeline
|
11 |
+
pipe = FluxPipeline.from_pretrained(
|
12 |
+
"black-forest-labs/FLUX.1-dev",
|
13 |
+
torch_dtype=torch.bfloat16
|
14 |
+
)
|
15 |
+
pipe.enable_model_cpu_offload()
|
16 |
|
17 |
stop_event = threading.Event()
|
18 |
|
19 |
+
def generate_images(
|
20 |
+
prompt,
|
21 |
+
height,
|
22 |
+
width,
|
23 |
+
guidance_scale,
|
24 |
+
num_inference_steps,
|
25 |
+
max_sequence_length,
|
26 |
+
seed,
|
27 |
+
randomize_seed
|
28 |
+
):
|
29 |
stop_event.clear()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
results = []
|
31 |
+
|
32 |
for i in range(3):
|
33 |
if stop_event.is_set():
|
34 |
+
return [None] * 3
|
35 |
+
|
36 |
+
# Handle seed randomization
|
37 |
+
if randomize_seed:
|
38 |
+
current_seed = torch.randint(0, 2**32 - 1, (1,)).item()
|
39 |
+
else:
|
40 |
+
current_seed = seed + i
|
41 |
+
|
42 |
+
generator = torch.Generator(device="cpu").manual_seed(current_seed)
|
43 |
+
|
44 |
+
# Generate image with current parameters
|
45 |
+
image = pipe(
|
46 |
+
prompt=prompt,
|
47 |
height=int(height),
|
48 |
width=int(width),
|
49 |
+
guidance_scale=guidance_scale,
|
50 |
+
num_inference_steps=int(num_inference_steps),
|
51 |
+
max_sequence_length=int(max_sequence_length),
|
52 |
+
generator=generator
|
53 |
+
).images[0]
|
54 |
+
|
55 |
+
results.append(image)
|
56 |
+
|
57 |
return results
|
58 |
|
59 |
def stop_generation():
|
|
|
60 |
stop_event.set()
|
61 |
+
return [None] * 3
|
62 |
|
63 |
with gr.Blocks() as interface:
|
64 |
+
gr.Markdown("""
|
65 |
+
### FLUX Image Generation
|
66 |
+
Adjust parameters below to control the image generation process
|
67 |
+
""")
|
68 |
|
69 |
with gr.Row():
|
70 |
+
text_input = gr.Textbox(
|
71 |
+
label="Prompt",
|
72 |
+
placeholder="Describe what you want to generate...",
|
73 |
+
scale=3
|
|
|
74 |
)
|
75 |
|
76 |
+
with gr.Accordion("Generation Parameters", open=False):
|
77 |
with gr.Row():
|
78 |
+
height = gr.Number(
|
79 |
+
label="Height",
|
80 |
+
value=1024,
|
81 |
+
minimum=512,
|
82 |
+
maximum=4096,
|
83 |
+
step=64,
|
84 |
+
precision=0
|
85 |
+
)
|
86 |
+
width = gr.Number(
|
87 |
+
label="Width",
|
88 |
+
value=1024,
|
89 |
+
minimum=512,
|
90 |
+
maximum=4096,
|
91 |
+
step=64,
|
92 |
+
precision=0
|
93 |
+
)
|
94 |
+
|
95 |
+
guidance_scale = gr.Slider(
|
96 |
+
label="Guidance Scale",
|
97 |
+
minimum=0.0,
|
98 |
+
maximum=20.0,
|
99 |
+
value=7.0,
|
100 |
+
step=0.5
|
101 |
+
)
|
102 |
+
|
103 |
+
num_inference_steps = gr.Slider(
|
104 |
+
label="Inference Steps",
|
105 |
+
minimum=10,
|
106 |
+
maximum=150,
|
107 |
+
value=50,
|
108 |
+
step=1
|
109 |
+
)
|
110 |
+
|
111 |
+
max_sequence_length = gr.Dropdown(
|
112 |
+
label="Max Sequence Length",
|
113 |
+
choices=[512, 768, 1024],
|
114 |
+
value=512
|
115 |
+
)
|
116 |
|
117 |
with gr.Row():
|
118 |
+
seed = gr.Number(
|
119 |
+
label="Seed",
|
120 |
+
value=42,
|
121 |
+
precision=0
|
|
|
122 |
)
|
123 |
+
randomize_seed = gr.Checkbox(
|
124 |
+
label="Randomize Seed",
|
125 |
+
value=True
|
|
|
|
|
126 |
)
|
127 |
+
|
128 |
with gr.Row():
|
129 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
130 |
+
stop_btn = gr.Button("Stop Generation")
|
131 |
+
|
132 |
with gr.Row():
|
133 |
+
output1 = gr.Image(label="Output 1", type="pil")
|
134 |
+
output2 = gr.Image(label="Output 2", type="pil")
|
135 |
+
output3 = gr.Image(label="Output 3", type="pil")
|
136 |
|
137 |
+
generate_btn.click(
|
138 |
generate_images,
|
139 |
+
inputs=[
|
140 |
+
text_input,
|
141 |
+
height,
|
142 |
+
width,
|
143 |
+
guidance_scale,
|
144 |
+
num_inference_steps,
|
145 |
+
max_sequence_length,
|
146 |
+
seed,
|
147 |
+
randomize_seed
|
148 |
+
],
|
149 |
outputs=[output1, output2, output3]
|
150 |
)
|
151 |
+
|
152 |
+
stop_btn.click(
|
153 |
stop_generation,
|
154 |
inputs=[],
|
155 |
outputs=[output1, output2, output3]
|