import torch import numpy as np import torch.nn as nn import torch.nn.functional as F def flow_warp(x, flow, interpolation='bilinear', padding_mode='zeros', align_corners=True): """Warp an image or a feature map with optical flow. Args: x (Tensor): Tensor with size (n, c, h, w). flow (Tensor): Tensor with size (n, h, w, 2). The last dimension is a two-channel, denoting the width and height relative offsets. Note that the values are not normalized to [-1, 1]. interpolation (str): Interpolation mode: 'nearest' or 'bilinear'. Default: 'bilinear'. padding_mode (str): Padding mode: 'zeros' or 'border' or 'reflection'. Default: 'zeros'. align_corners (bool): Whether align corners. Default: True. Returns: Tensor: Warped image or feature map. """ if x.size()[-2:] != flow.size()[1:3]: raise ValueError(f'The spatial sizes of input ({x.size()[-2:]}) and ' f'flow ({flow.size()[1:3]}) are not the same.') _, _, h, w = x.size() # create mesh grid device = flow.device grid_y, grid_x = torch.meshgrid(torch.arange(0, h, device=device), torch.arange(0, w, device=device)) grid = torch.stack((grid_x, grid_y), 2).type_as(x) # (w, h, 2) grid.requires_grad = False grid_flow = grid + flow # scale grid_flow to [-1,1] grid_flow_x = 2.0 * grid_flow[:, :, :, 0] / max(w - 1, 1) - 1.0 grid_flow_y = 2.0 * grid_flow[:, :, :, 1] / max(h - 1, 1) - 1.0 grid_flow = torch.stack((grid_flow_x, grid_flow_y), dim=3) output = F.grid_sample(x, grid_flow, mode=interpolation, padding_mode=padding_mode, align_corners=align_corners) return output # def image_warp(image, flow): # b, c, h, w = image.size() # device = image.device # flow = torch.cat([flow[:, 0:1, :, :] / ((w - 1.0) / 2.0), flow[:, 1:2, :, :] / ((h - 1.0) / 2.0)], dim=1) # normalize to [-1~1](from upper left to lower right # flow = flow.permute(0, 2, 3, 1) # if you wanna use grid_sample function, the channel(band) shape of show must be in the last dimension # x = np.linspace(-1, 1, w) # y = np.linspace(-1, 1, h) # X, Y = np.meshgrid(x, y) # grid = torch.cat((torch.from_numpy(X.astype('float32')).unsqueeze(0).unsqueeze(3), # torch.from_numpy(Y.astype('float32')).unsqueeze(0).unsqueeze(3)), 3).to(device) # output = torch.nn.functional.grid_sample(image, grid + flow, mode='bilinear', padding_mode='zeros') # return output def length_sq(x): return torch.sum(torch.square(x), dim=1, keepdim=True) def fbConsistencyCheck(flow_fw, flow_bw, alpha1=0.01, alpha2=0.5): flow_bw_warped = flow_warp(flow_bw, flow_fw.permute(0, 2, 3, 1)) # wb(wf(x)) flow_fw_warped = flow_warp(flow_fw, flow_bw.permute(0, 2, 3, 1)) # wf(wb(x)) flow_diff_fw = flow_fw + flow_bw_warped # wf + wb(wf(x)) flow_diff_bw = flow_bw + flow_fw_warped # wb + wf(wb(x)) mag_sq_fw = length_sq(flow_fw) + length_sq(flow_bw_warped) # |wf| + |wb(wf(x))| mag_sq_bw = length_sq(flow_bw) + length_sq(flow_fw_warped) # |wb| + |wf(wb(x))| occ_thresh_fw = alpha1 * mag_sq_fw + alpha2 occ_thresh_bw = alpha1 * mag_sq_bw + alpha2 fb_occ_fw = (length_sq(flow_diff_fw) > occ_thresh_fw).float() fb_occ_bw = (length_sq(flow_diff_bw) > occ_thresh_bw).float() return fb_occ_fw, fb_occ_bw # fb_occ_fw -> frame2 area occluded by frame1, fb_occ_bw -> frame1 area occluded by frame2 def rgb2gray(image): gray_image = image[:, 0] * 0.299 + image[:, 1] * 0.587 + 0.110 * image[:, 2] gray_image = gray_image.unsqueeze(1) return gray_image def ternary_transform(image, max_distance=1): device = image.device patch_size = 2 * max_distance + 1 intensities = rgb2gray(image) * 255 out_channels = patch_size * patch_size w = np.eye(out_channels).reshape(out_channels, 1, patch_size, patch_size) weights = torch.from_numpy(w).float().to(device) patches = F.conv2d(intensities, weights, stride=1, padding=1) transf = patches - intensities transf_norm = transf / torch.sqrt(0.81 + torch.square(transf)) return transf_norm def hamming_distance(t1, t2): dist = torch.square(t1 - t2) dist_norm = dist / (0.1 + dist) dist_sum = torch.sum(dist_norm, dim=1, keepdim=True) return dist_sum def create_mask(mask, paddings): """ padding: [[top, bottom], [left, right]] """ shape = mask.shape inner_height = shape[2] - (paddings[0][0] + paddings[0][1]) inner_width = shape[3] - (paddings[1][0] + paddings[1][1]) inner = torch.ones([inner_height, inner_width]) mask2d = F.pad(inner, pad=[paddings[1][0], paddings[1][1], paddings[0][0], paddings[0][1]]) mask3d = mask2d.unsqueeze(0) mask4d = mask3d.unsqueeze(0).repeat(shape[0], 1, 1, 1) return mask4d.detach() def ternary_loss2(frame1, warp_frame21, confMask, masks, max_distance=1): """ Args: frame1: torch tensor, with shape [b * t, c, h, w] warp_frame21: torch tensor, with shape [b * t, c, h, w] confMask: confidence mask, with shape [b * t, c, h, w] masks: torch tensor, with shape [b * t, c, h, w] max_distance: maximum distance. Returns: ternary loss """ t1 = ternary_transform(frame1) t21 = ternary_transform(warp_frame21) dist = hamming_distance(t1, t21) loss = torch.mean(dist * confMask * masks) / torch.mean(masks) return loss