Spaces:
Running
on
A10G
Running
on
A10G
File size: 14,236 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import os
import io
import cv2
import random
import numpy as np
from PIL import Image, ImageOps
import zipfile
import math
import torch
import matplotlib
import matplotlib.patches as patches
from matplotlib.path import Path
from matplotlib import pyplot as plt
from torchvision import transforms
# matplotlib.use('agg')
# ###########################################################################
# Directory IO
# ###########################################################################
def read_dirnames_under_root(root_dir):
dirnames = [
name for i, name in enumerate(sorted(os.listdir(root_dir)))
if os.path.isdir(os.path.join(root_dir, name))
]
print(f'Reading directories under {root_dir}, num: {len(dirnames)}')
return dirnames
class TrainZipReader(object):
file_dict = dict()
def __init__(self):
super(TrainZipReader, self).__init__()
@staticmethod
def build_file_dict(path):
file_dict = TrainZipReader.file_dict
if path in file_dict:
return file_dict[path]
else:
file_handle = zipfile.ZipFile(path, 'r')
file_dict[path] = file_handle
return file_dict[path]
@staticmethod
def imread(path, idx):
zfile = TrainZipReader.build_file_dict(path)
filelist = zfile.namelist()
filelist.sort()
data = zfile.read(filelist[idx])
#
im = Image.open(io.BytesIO(data))
return im
class TestZipReader(object):
file_dict = dict()
def __init__(self):
super(TestZipReader, self).__init__()
@staticmethod
def build_file_dict(path):
file_dict = TestZipReader.file_dict
if path in file_dict:
return file_dict[path]
else:
file_handle = zipfile.ZipFile(path, 'r')
file_dict[path] = file_handle
return file_dict[path]
@staticmethod
def imread(path, idx):
zfile = TestZipReader.build_file_dict(path)
filelist = zfile.namelist()
filelist.sort()
data = zfile.read(filelist[idx])
file_bytes = np.asarray(bytearray(data), dtype=np.uint8)
im = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))
# im = Image.open(io.BytesIO(data))
return im
# ###########################################################################
# Data augmentation
# ###########################################################################
def to_tensors():
return transforms.Compose([Stack(), ToTorchFormatTensor()])
class GroupRandomHorizontalFlowFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __call__(self, img_group, flowF_group, flowB_group):
v = random.random()
if v < 0.5:
ret_img = [
img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group
]
ret_flowF = [ff[:, ::-1] * [-1.0, 1.0] for ff in flowF_group]
ret_flowB = [fb[:, ::-1] * [-1.0, 1.0] for fb in flowB_group]
return ret_img, ret_flowF, ret_flowB
else:
return img_group, flowF_group, flowB_group
class GroupRandomHorizontalFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __call__(self, img_group, is_flow=False):
v = random.random()
if v < 0.5:
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
if is_flow:
for i in range(0, len(ret), 2):
# invert flow pixel values when flipping
ret[i] = ImageOps.invert(ret[i])
return ret
else:
return img_group
class Stack(object):
def __init__(self, roll=False):
self.roll = roll
def __call__(self, img_group):
mode = img_group[0].mode
if mode == '1':
img_group = [img.convert('L') for img in img_group]
mode = 'L'
if mode == 'L':
return np.stack([np.expand_dims(x, 2) for x in img_group], axis=2)
elif mode == 'RGB':
if self.roll:
return np.stack([np.array(x)[:, :, ::-1] for x in img_group],
axis=2)
else:
return np.stack(img_group, axis=2)
else:
raise NotImplementedError(f"Image mode {mode}")
class ToTorchFormatTensor(object):
""" Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
def __init__(self, div=True):
self.div = div
def __call__(self, pic):
if isinstance(pic, np.ndarray):
# numpy img: [L, C, H, W]
img = torch.from_numpy(pic).permute(2, 3, 0, 1).contiguous()
else:
# handle PIL Image
img = torch.ByteTensor(torch.ByteStorage.from_buffer(
pic.tobytes()))
img = img.view(pic.size[1], pic.size[0], len(pic.mode))
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
img = img.float().div(255) if self.div else img.float()
return img
# ###########################################################################
# Create masks with random shape
# ###########################################################################
def create_random_shape_with_random_motion(video_length,
imageHeight=240,
imageWidth=432):
# get a random shape
height = random.randint(imageHeight // 3, imageHeight - 1)
width = random.randint(imageWidth // 3, imageWidth - 1)
edge_num = random.randint(6, 8)
ratio = random.randint(6, 8) / 10
region = get_random_shape(edge_num=edge_num,
ratio=ratio,
height=height,
width=width)
region_width, region_height = region.size
# get random position
x, y = random.randint(0, imageHeight - region_height), random.randint(
0, imageWidth - region_width)
velocity = get_random_velocity(max_speed=3)
m = Image.fromarray(np.zeros((imageHeight, imageWidth)).astype(np.uint8))
m.paste(region, (y, x, y + region.size[0], x + region.size[1]))
masks = [m.convert('L')]
# return fixed masks
if random.uniform(0, 1) > 0.5:
return masks * video_length
# return moving masks
for _ in range(video_length - 1):
x, y, velocity = random_move_control_points(x,
y,
imageHeight,
imageWidth,
velocity,
region.size,
maxLineAcceleration=(3,
0.5),
maxInitSpeed=3)
m = Image.fromarray(
np.zeros((imageHeight, imageWidth)).astype(np.uint8))
m.paste(region, (y, x, y + region.size[0], x + region.size[1]))
masks.append(m.convert('L'))
return masks
def create_random_shape_with_random_motion_zoom_rotation(video_length, zoomin=0.9, zoomout=1.1, rotmin=1, rotmax=10, imageHeight=240, imageWidth=432):
# get a random shape
assert zoomin < 1, "Zoom-in parameter must be smaller than 1"
assert zoomout > 1, "Zoom-out parameter must be larger than 1"
assert rotmin < rotmax, "Minimum value of rotation must be smaller than maximun value !"
height = random.randint(imageHeight//3, imageHeight-1)
width = random.randint(imageWidth//3, imageWidth-1)
edge_num = random.randint(6, 8)
ratio = random.randint(6, 8)/10
region = get_random_shape(
edge_num=edge_num, ratio=ratio, height=height, width=width)
region_width, region_height = region.size
# get random position
x, y = random.randint(
0, imageHeight-region_height), random.randint(0, imageWidth-region_width)
velocity = get_random_velocity(max_speed=3)
m = Image.fromarray(np.zeros((imageHeight, imageWidth)).astype(np.uint8))
m.paste(region, (y, x, y+region.size[0], x+region.size[1]))
masks = [m.convert('L')]
# return fixed masks
if random.uniform(0, 1) > 0.5:
return masks*video_length # -> directly copy all the base masks
# return moving masks
for _ in range(video_length-1):
x, y, velocity = random_move_control_points(
x, y, imageHeight, imageWidth, velocity, region.size, maxLineAcceleration=(3, 0.5), maxInitSpeed=3)
m = Image.fromarray(
np.zeros((imageHeight, imageWidth)).astype(np.uint8))
### add by kaidong, to simulate zoon-in, zoom-out and rotation
extra_transform = random.uniform(0, 1)
# zoom in and zoom out
if extra_transform > 0.75:
resize_coefficient = random.uniform(zoomin, zoomout)
region = region.resize((math.ceil(region_width * resize_coefficient), math.ceil(region_height * resize_coefficient)), Image.NEAREST)
m.paste(region, (y, x, y + region.size[0], x + region.size[1]))
region_width, region_height = region.size
# rotation
elif extra_transform > 0.5:
m.paste(region, (y, x, y + region.size[0], x + region.size[1]))
m = m.rotate(random.randint(rotmin, rotmax))
# region_width, region_height = region.size
### end
else:
m.paste(region, (y, x, y+region.size[0], x+region.size[1]))
masks.append(m.convert('L'))
return masks
def get_random_shape(edge_num=9, ratio=0.7, width=432, height=240):
'''
There is the initial point and 3 points per cubic bezier curve.
Thus, the curve will only pass though n points, which will be the sharp edges.
The other 2 modify the shape of the bezier curve.
edge_num, Number of possibly sharp edges
points_num, number of points in the Path
ratio, (0, 1) magnitude of the perturbation from the unit circle,
'''
points_num = edge_num*3 + 1
angles = np.linspace(0, 2*np.pi, points_num)
codes = np.full(points_num, Path.CURVE4)
codes[0] = Path.MOVETO
# Using this instead of Path.CLOSEPOLY avoids an innecessary straight line
verts = np.stack((np.cos(angles), np.sin(angles))).T * \
(2*ratio*np.random.random(points_num)+1-ratio)[:, None]
verts[-1, :] = verts[0, :]
path = Path(verts, codes)
# draw paths into images
fig = plt.figure()
ax = fig.add_subplot(111)
patch = patches.PathPatch(path, facecolor='black', lw=2)
ax.add_patch(patch)
ax.set_xlim(np.min(verts)*1.1, np.max(verts)*1.1)
ax.set_ylim(np.min(verts)*1.1, np.max(verts)*1.1)
ax.axis('off') # removes the axis to leave only the shape
fig.canvas.draw()
# convert plt images into numpy images
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape((fig.canvas.get_width_height()[::-1] + (3,)))
plt.close(fig)
# postprocess
data = cv2.resize(data, (width, height))[:, :, 0]
data = (1 - np.array(data > 0).astype(np.uint8))*255
corrdinates = np.where(data > 0)
xmin, xmax, ymin, ymax = np.min(corrdinates[0]), np.max(
corrdinates[0]), np.min(corrdinates[1]), np.max(corrdinates[1])
region = Image.fromarray(data).crop((ymin, xmin, ymax, xmax))
return region
def random_accelerate(velocity, maxAcceleration, dist='uniform'):
speed, angle = velocity
d_speed, d_angle = maxAcceleration
if dist == 'uniform':
speed += np.random.uniform(-d_speed, d_speed)
angle += np.random.uniform(-d_angle, d_angle)
elif dist == 'guassian':
speed += np.random.normal(0, d_speed / 2)
angle += np.random.normal(0, d_angle / 2)
else:
raise NotImplementedError(
f'Distribution type {dist} is not supported.')
return (speed, angle)
def get_random_velocity(max_speed=3, dist='uniform'):
if dist == 'uniform':
speed = np.random.uniform(max_speed)
elif dist == 'guassian':
speed = np.abs(np.random.normal(0, max_speed / 2))
else:
raise NotImplementedError(
f'Distribution type {dist} is not supported.')
angle = np.random.uniform(0, 2 * np.pi)
return (speed, angle)
def random_move_control_points(X,
Y,
imageHeight,
imageWidth,
lineVelocity,
region_size,
maxLineAcceleration=(3, 0.5),
maxInitSpeed=3):
region_width, region_height = region_size
speed, angle = lineVelocity
X += int(speed * np.cos(angle))
Y += int(speed * np.sin(angle))
lineVelocity = random_accelerate(lineVelocity,
maxLineAcceleration,
dist='guassian')
if ((X > imageHeight - region_height) or (X < 0)
or (Y > imageWidth - region_width) or (Y < 0)):
lineVelocity = get_random_velocity(maxInitSpeed, dist='guassian')
new_X = np.clip(X, 0, imageHeight - region_height)
new_Y = np.clip(Y, 0, imageWidth - region_width)
return new_X, new_Y, lineVelocity
if __name__ == '__main__':
trials = 10
for _ in range(trials):
video_length = 10
# The returned masks are either stationary (50%) or moving (50%)
masks = create_random_shape_with_random_motion(video_length,
imageHeight=240,
imageWidth=432)
for m in masks:
cv2.imshow('mask', np.array(m))
cv2.waitKey(500)
|