File size: 20,618 Bytes
320e465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
import numpy as np
from skimage import measure
from scipy import linalg

import torch
import torch.nn as nn
import torch.nn.functional as F

from core.utils import to_tensors


def calculate_epe(flow1, flow2):
    """Calculate End point errors."""

    epe = torch.sum((flow1 - flow2)**2, dim=1).sqrt()
    epe = epe.view(-1)
    return epe.mean().item()


def calculate_psnr(img1, img2):
    """Calculate PSNR (Peak Signal-to-Noise Ratio).
    Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
    Args:
        img1 (ndarray): Images with range [0, 255].
        img2 (ndarray): Images with range [0, 255].
    Returns:
        float: psnr result.
    """

    assert img1.shape == img2.shape, \
        (f'Image shapes are differnet: {img1.shape}, {img2.shape}.')

    mse = np.mean((img1 - img2)**2)
    if mse == 0:
        return float('inf')
    return 20. * np.log10(255. / np.sqrt(mse))


def calc_psnr_and_ssim(img1, img2):
    """Calculate PSNR and SSIM for images.
        img1: ndarray, range [0, 255]
        img2: ndarray, range [0, 255]
    """
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)

    psnr = calculate_psnr(img1, img2)
    ssim = measure.compare_ssim(img1,
                                img2,
                                data_range=255,
                                multichannel=True,
                                win_size=65)

    return psnr, ssim


###########################
# I3D models
###########################


def init_i3d_model(i3d_model_path):
    print(f"[Loading I3D model from {i3d_model_path} for FID score ..]")
    i3d_model = InceptionI3d(400, in_channels=3, final_endpoint='Logits')
    i3d_model.load_state_dict(torch.load(i3d_model_path))
    i3d_model.to(torch.device('cuda:0'))
    return i3d_model


def calculate_i3d_activations(video1, video2, i3d_model, device):
    """Calculate VFID metric.
        video1: list[PIL.Image]
        video2: list[PIL.Image]
    """
    video1 = to_tensors()(video1).unsqueeze(0).to(device)
    video2 = to_tensors()(video2).unsqueeze(0).to(device)
    video1_activations = get_i3d_activations(
        video1, i3d_model).cpu().numpy().flatten()
    video2_activations = get_i3d_activations(
        video2, i3d_model).cpu().numpy().flatten()

    return video1_activations, video2_activations


def calculate_vfid(real_activations, fake_activations):
    """
    Given two distribution of features, compute the FID score between them
    Params:
        real_activations: list[ndarray]
        fake_activations: list[ndarray]
    """
    m1 = np.mean(real_activations, axis=0)
    m2 = np.mean(fake_activations, axis=0)
    s1 = np.cov(real_activations, rowvar=False)
    s2 = np.cov(fake_activations, rowvar=False)
    return calculate_frechet_distance(m1, s1, m2, s2)


def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
    """Numpy implementation of the Frechet Distance.
    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
    and X_2 ~ N(mu_2, C_2) is
            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
    Stable version by Dougal J. Sutherland.
    Params:
    -- mu1   : Numpy array containing the activations of a layer of the
               inception net (like returned by the function 'get_predictions')
               for generated samples.
    -- mu2   : The sample mean over activations, precalculated on an
               representive data set.
    -- sigma1: The covariance matrix over activations for generated samples.
    -- sigma2: The covariance matrix over activations, precalculated on an
               representive data set.
    Returns:
    --   : The Frechet Distance.
    """

    mu1 = np.atleast_1d(mu1)
    mu2 = np.atleast_1d(mu2)

    sigma1 = np.atleast_2d(sigma1)
    sigma2 = np.atleast_2d(sigma2)

    assert mu1.shape == mu2.shape, \
        'Training and test mean vectors have different lengths'
    assert sigma1.shape == sigma2.shape, \
        'Training and test covariances have different dimensions'

    diff = mu1 - mu2

    # Product might be almost singular
    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
    if not np.isfinite(covmean).all():
        msg = ('fid calculation produces singular product; '
               'adding %s to diagonal of cov estimates') % eps
        print(msg)
        offset = np.eye(sigma1.shape[0]) * eps
        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))

    # Numerical error might give slight imaginary component
    if np.iscomplexobj(covmean):
        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
            m = np.max(np.abs(covmean.imag))
            raise ValueError('Imaginary component {}'.format(m))
        covmean = covmean.real

    tr_covmean = np.trace(covmean)

    return (diff.dot(diff) + np.trace(sigma1) +  # NOQA
            np.trace(sigma2) - 2 * tr_covmean)


def get_i3d_activations(batched_video,
                        i3d_model,
                        target_endpoint='Logits',
                        flatten=True,
                        grad_enabled=False):
    """
    Get features from i3d model and flatten them to 1d feature,
    valid target endpoints are defined in InceptionI3d.VALID_ENDPOINTS
    VALID_ENDPOINTS = (
        'Conv3d_1a_7x7',
        'MaxPool3d_2a_3x3',
        'Conv3d_2b_1x1',
        'Conv3d_2c_3x3',
        'MaxPool3d_3a_3x3',
        'Mixed_3b',
        'Mixed_3c',
        'MaxPool3d_4a_3x3',
        'Mixed_4b',
        'Mixed_4c',
        'Mixed_4d',
        'Mixed_4e',
        'Mixed_4f',
        'MaxPool3d_5a_2x2',
        'Mixed_5b',
        'Mixed_5c',
        'Logits',
        'Predictions',
    )
    """
    with torch.set_grad_enabled(grad_enabled):
        feat = i3d_model.extract_features(batched_video.transpose(1, 2),
                                          target_endpoint)
    if flatten:
        feat = feat.view(feat.size(0), -1)

    return feat


# This code is from https://github.com/piergiaj/pytorch-i3d/blob/master/pytorch_i3d.py
# I only fix flake8 errors and do some cleaning here


class MaxPool3dSamePadding(nn.MaxPool3d):
    def compute_pad(self, dim, s):
        if s % self.stride[dim] == 0:
            return max(self.kernel_size[dim] - self.stride[dim], 0)
        else:
            return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)

    def forward(self, x):
        # compute 'same' padding
        (batch, channel, t, h, w) = x.size()
        pad_t = self.compute_pad(0, t)
        pad_h = self.compute_pad(1, h)
        pad_w = self.compute_pad(2, w)

        pad_t_f = pad_t // 2
        pad_t_b = pad_t - pad_t_f
        pad_h_f = pad_h // 2
        pad_h_b = pad_h - pad_h_f
        pad_w_f = pad_w // 2
        pad_w_b = pad_w - pad_w_f

        pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
        x = F.pad(x, pad)
        return super(MaxPool3dSamePadding, self).forward(x)


class Unit3D(nn.Module):
    def __init__(self,
                 in_channels,
                 output_channels,
                 kernel_shape=(1, 1, 1),
                 stride=(1, 1, 1),
                 padding=0,
                 activation_fn=F.relu,
                 use_batch_norm=True,
                 use_bias=False,
                 name='unit_3d'):
        """Initializes Unit3D module."""
        super(Unit3D, self).__init__()

        self._output_channels = output_channels
        self._kernel_shape = kernel_shape
        self._stride = stride
        self._use_batch_norm = use_batch_norm
        self._activation_fn = activation_fn
        self._use_bias = use_bias
        self.name = name
        self.padding = padding

        self.conv3d = nn.Conv3d(
            in_channels=in_channels,
            out_channels=self._output_channels,
            kernel_size=self._kernel_shape,
            stride=self._stride,
            padding=0,  # we always want padding to be 0 here. We will
            # dynamically pad based on input size in forward function
            bias=self._use_bias)

        if self._use_batch_norm:
            self.bn = nn.BatchNorm3d(self._output_channels,
                                     eps=0.001,
                                     momentum=0.01)

    def compute_pad(self, dim, s):
        if s % self._stride[dim] == 0:
            return max(self._kernel_shape[dim] - self._stride[dim], 0)
        else:
            return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)

    def forward(self, x):
        # compute 'same' padding
        (batch, channel, t, h, w) = x.size()
        pad_t = self.compute_pad(0, t)
        pad_h = self.compute_pad(1, h)
        pad_w = self.compute_pad(2, w)

        pad_t_f = pad_t // 2
        pad_t_b = pad_t - pad_t_f
        pad_h_f = pad_h // 2
        pad_h_b = pad_h - pad_h_f
        pad_w_f = pad_w // 2
        pad_w_b = pad_w - pad_w_f

        pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
        x = F.pad(x, pad)

        x = self.conv3d(x)
        if self._use_batch_norm:
            x = self.bn(x)
        if self._activation_fn is not None:
            x = self._activation_fn(x)
        return x


class InceptionModule(nn.Module):
    def __init__(self, in_channels, out_channels, name):
        super(InceptionModule, self).__init__()

        self.b0 = Unit3D(in_channels=in_channels,
                         output_channels=out_channels[0],
                         kernel_shape=[1, 1, 1],
                         padding=0,
                         name=name + '/Branch_0/Conv3d_0a_1x1')
        self.b1a = Unit3D(in_channels=in_channels,
                          output_channels=out_channels[1],
                          kernel_shape=[1, 1, 1],
                          padding=0,
                          name=name + '/Branch_1/Conv3d_0a_1x1')
        self.b1b = Unit3D(in_channels=out_channels[1],
                          output_channels=out_channels[2],
                          kernel_shape=[3, 3, 3],
                          name=name + '/Branch_1/Conv3d_0b_3x3')
        self.b2a = Unit3D(in_channels=in_channels,
                          output_channels=out_channels[3],
                          kernel_shape=[1, 1, 1],
                          padding=0,
                          name=name + '/Branch_2/Conv3d_0a_1x1')
        self.b2b = Unit3D(in_channels=out_channels[3],
                          output_channels=out_channels[4],
                          kernel_shape=[3, 3, 3],
                          name=name + '/Branch_2/Conv3d_0b_3x3')
        self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
                                        stride=(1, 1, 1),
                                        padding=0)
        self.b3b = Unit3D(in_channels=in_channels,
                          output_channels=out_channels[5],
                          kernel_shape=[1, 1, 1],
                          padding=0,
                          name=name + '/Branch_3/Conv3d_0b_1x1')
        self.name = name

    def forward(self, x):
        b0 = self.b0(x)
        b1 = self.b1b(self.b1a(x))
        b2 = self.b2b(self.b2a(x))
        b3 = self.b3b(self.b3a(x))
        return torch.cat([b0, b1, b2, b3], dim=1)


class InceptionI3d(nn.Module):
    """Inception-v1 I3D architecture.
    The model is introduced in:
        Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
        Joao Carreira, Andrew Zisserman
        https://arxiv.org/pdf/1705.07750v1.pdf.
    See also the Inception architecture, introduced in:
        Going deeper with convolutions
        Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
        Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
        http://arxiv.org/pdf/1409.4842v1.pdf.
    """

    # Endpoints of the model in order. During construction, all the endpoints up
    # to a designated `final_endpoint` are returned in a dictionary as the
    # second return value.
    VALID_ENDPOINTS = (
        'Conv3d_1a_7x7',
        'MaxPool3d_2a_3x3',
        'Conv3d_2b_1x1',
        'Conv3d_2c_3x3',
        'MaxPool3d_3a_3x3',
        'Mixed_3b',
        'Mixed_3c',
        'MaxPool3d_4a_3x3',
        'Mixed_4b',
        'Mixed_4c',
        'Mixed_4d',
        'Mixed_4e',
        'Mixed_4f',
        'MaxPool3d_5a_2x2',
        'Mixed_5b',
        'Mixed_5c',
        'Logits',
        'Predictions',
    )

    def __init__(self,
                 num_classes=400,
                 spatial_squeeze=True,
                 final_endpoint='Logits',
                 name='inception_i3d',
                 in_channels=3,
                 dropout_keep_prob=0.5):
        """Initializes I3D model instance.
        Args:
          num_classes: The number of outputs in the logit layer (default 400, which
              matches the Kinetics dataset).
          spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
              before returning (default True).
          final_endpoint: The model contains many possible endpoints.
              `final_endpoint` specifies the last endpoint for the model to be built
              up to. In addition to the output at `final_endpoint`, all the outputs
              at endpoints up to `final_endpoint` will also be returned, in a
              dictionary. `final_endpoint` must be one of
              InceptionI3d.VALID_ENDPOINTS (default 'Logits').
          name: A string (optional). The name of this module.
        Raises:
          ValueError: if `final_endpoint` is not recognized.
        """

        if final_endpoint not in self.VALID_ENDPOINTS:
            raise ValueError('Unknown final endpoint %s' % final_endpoint)

        super(InceptionI3d, self).__init__()
        self._num_classes = num_classes
        self._spatial_squeeze = spatial_squeeze
        self._final_endpoint = final_endpoint
        self.logits = None

        if self._final_endpoint not in self.VALID_ENDPOINTS:
            raise ValueError('Unknown final endpoint %s' %
                             self._final_endpoint)

        self.end_points = {}
        end_point = 'Conv3d_1a_7x7'
        self.end_points[end_point] = Unit3D(in_channels=in_channels,
                                            output_channels=64,
                                            kernel_shape=[7, 7, 7],
                                            stride=(2, 2, 2),
                                            padding=(3, 3, 3),
                                            name=name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'MaxPool3d_2a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(
            kernel_size=[1, 3, 3], stride=(1, 2, 2), padding=0)
        if self._final_endpoint == end_point:
            return

        end_point = 'Conv3d_2b_1x1'
        self.end_points[end_point] = Unit3D(in_channels=64,
                                            output_channels=64,
                                            kernel_shape=[1, 1, 1],
                                            padding=0,
                                            name=name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'Conv3d_2c_3x3'
        self.end_points[end_point] = Unit3D(in_channels=64,
                                            output_channels=192,
                                            kernel_shape=[3, 3, 3],
                                            padding=1,
                                            name=name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'MaxPool3d_3a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(
            kernel_size=[1, 3, 3], stride=(1, 2, 2), padding=0)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_3b'
        self.end_points[end_point] = InceptionModule(192,
                                                     [64, 96, 128, 16, 32, 32],
                                                     name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_3c'
        self.end_points[end_point] = InceptionModule(
            256, [128, 128, 192, 32, 96, 64], name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'MaxPool3d_4a_3x3'
        self.end_points[end_point] = MaxPool3dSamePadding(
            kernel_size=[3, 3, 3], stride=(2, 2, 2), padding=0)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_4b'
        self.end_points[end_point] = InceptionModule(
            128 + 192 + 96 + 64, [192, 96, 208, 16, 48, 64], name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_4c'
        self.end_points[end_point] = InceptionModule(
            192 + 208 + 48 + 64, [160, 112, 224, 24, 64, 64], name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_4d'
        self.end_points[end_point] = InceptionModule(
            160 + 224 + 64 + 64, [128, 128, 256, 24, 64, 64], name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_4e'
        self.end_points[end_point] = InceptionModule(
            128 + 256 + 64 + 64, [112, 144, 288, 32, 64, 64], name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_4f'
        self.end_points[end_point] = InceptionModule(
            112 + 288 + 64 + 64, [256, 160, 320, 32, 128, 128],
            name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'MaxPool3d_5a_2x2'
        self.end_points[end_point] = MaxPool3dSamePadding(
            kernel_size=[2, 2, 2], stride=(2, 2, 2), padding=0)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_5b'
        self.end_points[end_point] = InceptionModule(
            256 + 320 + 128 + 128, [256, 160, 320, 32, 128, 128],
            name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'Mixed_5c'
        self.end_points[end_point] = InceptionModule(
            256 + 320 + 128 + 128, [384, 192, 384, 48, 128, 128],
            name + end_point)
        if self._final_endpoint == end_point:
            return

        end_point = 'Logits'
        self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7], stride=(1, 1, 1))
        self.dropout = nn.Dropout(dropout_keep_prob)
        self.logits = Unit3D(in_channels=384 + 384 + 128 + 128,
                             output_channels=self._num_classes,
                             kernel_shape=[1, 1, 1],
                             padding=0,
                             activation_fn=None,
                             use_batch_norm=False,
                             use_bias=True,
                             name='logits')

        self.build()

    def replace_logits(self, num_classes):
        self._num_classes = num_classes
        self.logits = Unit3D(in_channels=384 + 384 + 128 + 128,
                             output_channels=self._num_classes,
                             kernel_shape=[1, 1, 1],
                             padding=0,
                             activation_fn=None,
                             use_batch_norm=False,
                             use_bias=True,
                             name='logits')

    def build(self):
        for k in self.end_points.keys():
            self.add_module(k, self.end_points[k])

    def forward(self, x):
        for end_point in self.VALID_ENDPOINTS:
            if end_point in self.end_points:
                x = self._modules[end_point](
                    x)  # use _modules to work with dataparallel

        x = self.logits(self.dropout(self.avg_pool(x)))
        if self._spatial_squeeze:
            logits = x.squeeze(3).squeeze(3)
        # logits is batch X time X classes, which is what we want to work with
        return logits

    def extract_features(self, x, target_endpoint='Logits'):
        for end_point in self.VALID_ENDPOINTS:
            if end_point in self.end_points:
                x = self._modules[end_point](x)
                if end_point == target_endpoint:
                    break
        if target_endpoint == 'Logits':
            return x.mean(4).mean(3).mean(2)
        else:
            return x