# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Modified by Xueyan Zou (xueyan@cs.wisc.edu) # -------------------------------------------------------- # Copyright (c) Facebook, Inc. and its affiliates. # Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ MaskFormer criterion. """ import logging import torch import torch.nn.functional as F from torch import nn from detectron2.utils.comm import get_world_size from timm.loss import SoftTargetCrossEntropy from .point_features import ( get_uncertain_point_coords_with_randomness, point_sample, ) from ..language.loss import ql_multi_contrastive_loss, image_text_contrastive_loss_queue, vl_similarity, all_gather_grad from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list, _max_by_axis from ..utils import box_ops # from image2html.visualizer import VL def dice_loss( inputs: torch.Tensor, targets: torch.Tensor, num_masks: float, ): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(-1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_masks dice_loss_jit = torch.jit.script( dice_loss ) # type: torch.jit.ScriptModule def sigmoid_ce_loss( inputs: torch.Tensor, targets: torch.Tensor, num_masks: float, ): """ Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). Returns: Loss tensor """ loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") return loss.mean(1).sum() / num_masks sigmoid_ce_loss_jit = torch.jit.script( sigmoid_ce_loss ) # type: torch.jit.ScriptModule def calculate_uncertainty(logits): """ We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the foreground class in `classes`. Args: logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is the number of foreground classes. The values are logits. Returns: scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most uncertain locations having the highest uncertainty score. """ assert logits.shape[1] == 1 gt_class_logits = logits.clone() return -(torch.abs(gt_class_logits)) class SetCriterion(nn.Module): """This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, eos_coef, top_x_layers, losses, num_points, oversample_ratio, importance_sample_ratio, grounding_weight): """Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef self.top_x_layers = top_x_layers self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) # pointwise mask loss parameters self.num_points = num_points self.oversample_ratio = oversample_ratio self.importance_sample_ratio = importance_sample_ratio # grounding self.grounding_weight = grounding_weight def loss_labels(self, outputs, targets, indices, num_masks, layer_id, extra): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ if layer_id > self.top_x_layers['mask']: return {"loss_mask_ce_0": 0} if indices is None or len(targets) == 0: loss_ce = outputs['pred_logits'].sum() * 0.0 losses = {"loss_mask_ce_0": loss_ce} return losses assert "pred_logits" in outputs src_logits = outputs["pred_logits"].type(self.empty_weight.dtype) idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) target_classes[idx] = target_classes_o if src_logits.shape[2] == self.num_classes+1: empty_weight = torch.ones(self.num_classes + 1).to(src_logits.device).type(self.empty_weight.dtype) empty_weight[-1] = self.eos_coef else: empty_weight = torch.ones(self.num_classes + 1000 + 1).to(src_logits.device).type(self.empty_weight.dtype) empty_weight[self.num_classes] = self.eos_coef loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes) losses = {"loss_mask_ce_0": loss_ce} return losses def loss_labels_openimage(self, outputs, targets, indices, num_masks, layer_id, extra): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ if layer_id > self.top_x_layers['mask']: return {"loss_openimage_ce_0": 0} assert "pred_captions" in outputs if indices is None or len(targets) == 0 or (len(targets) > 0 and len(targets[0]['labels']) == 0): loss_ce = outputs['pred_captions'].sum() * 0.0 losses = {"loss_openimage_ce_0": loss_ce} return losses # compute i2t loss loss_openimage_ce = 0 losses = {} for b in range(len(indices)): pred_logit = outputs["pred_logits"][b][indices[b][0]] gt_logit = torch.zeros_like(pred_logit) select_idx = torch.stack((torch.arange(len(indices[b][1])), indices[b][1])).tolist() gt_logit[select_idx] = 1 loss_openimage_ce += torch.sum(-gt_logit * F.log_softmax(pred_logit, dim=-1), dim=-1).mean() loss_openimage_ce = loss_openimage_ce / len(indices) losses.update({"loss_openimage_ce_0": loss_openimage_ce}) return losses def loss_itc(self, outputs, targets, indices, num_masks, layer_id, extra): if layer_id >= self.top_x_layers['retrieval']: return {"loss_retrieval_decoder_0": 0} t_emb = torch.cat([x['caption_proj'] for x in targets], dim=0) v_emb = outputs['pred_captions'][:,-1] loss_contrast = image_text_contrastive_loss_queue(v_emb, t_emb, extra['lang_encoder'], extra['training']) # compute query-token contrastive loss ttk_emb = torch.cat([x['caption_tokens'] for x in targets], dim=0) ttk_mask = torch.cat([x['caption_mask'] for x in targets], dim=0).float() ttk_mask = ttk_mask * torch.cumsum(ttk_mask, dim=1) vtk_emb = outputs['pred_captions'][:,:-1] keep = torch.cat([x['caption_mask'] for x in targets], dim=0).bool() ttk_emb = ttk_emb / (ttk_emb.norm(dim=-1, keepdim=True) + 1e-7) vtk_emb = vtk_emb / (vtk_emb.norm(dim=-1, keepdim=True) + 1e-7) logit_scale = extra['lang_encoder'].logit_scale.exp().clamp(max=100) # prepare gt gt = (torch.eye(vtk_emb.shape[0]).type_as(ttk_mask).unsqueeze(-1) * ttk_mask.unsqueeze(0).repeat(vtk_emb.shape[0], 1, 1))[:,keep].flatten(1) gt = gt / (gt.sum(1, keepdim=True) + 1e-7) # compute i2t loss logits = logit_scale * (vtk_emb @ ttk_emb[keep].transpose(0, 1)).mean(1) loss_contrast_fine_vt = SoftTargetCrossEntropy()(logits, gt) # loss_contrast_fine = loss_contrast_fine_vt # i2t only # compute t2i loss bs, nq, _ = vtk_emb.shape logits = logit_scale * (ttk_emb @ vtk_emb.flatten(0,1).transpose(0, 1)).reshape(bs,-1,bs,nq).mean(dim=-1)[keep,:] loss_contrast_fine_tv = SoftTargetCrossEntropy()(logits, gt.t()) # compute loss loss_contrast_fine = (loss_contrast_fine_vt * 0.7 + loss_contrast_fine_tv * 0.3) losses = {"loss_retrieval_decoder_0": loss_contrast + loss_contrast_fine * 0.5} return losses def loss_captionings(self, outputs, targets, indices, num_masks, layer_id, extra): if layer_id >= self.top_x_layers['captioning']: return {"loss_captioning_0": 0} pred_captions_gen = outputs['pred_captionings'][:, :-1] token_embs = extra['token_embedding'].weight # token_embs = (token_embs / token_embs.norm(dim=-1, keepdim=True) + 1e-7) # pred_captions_gen = (pred_captions_gen / pred_captions_gen.norm(dim=-1, keepdim=True) + 1e-7) pred_captions_gen = pred_captions_gen @ token_embs.t() # temperature = extra['lang_encoder'].logit_scale # logit_scale = temperature.exp().clamp(max=100) target_captions_gen = torch.cat([target['caption_tokenids'] for target in targets], 0)[:, 1:] target_captions_gen_mask = torch.cat([target['caption_mask'] for target in targets], 0)[:, 1:] # loss_caption = F.cross_entropy(pred_captions_gen.transpose(1,2) * logit_scale, target_captions_gen, reduction='none') loss_caption = F.cross_entropy(pred_captions_gen.transpose(1,2), target_captions_gen, reduction='none') loss_caption = (loss_caption * target_captions_gen_mask).sum() / (target_captions_gen_mask.sum() + 1) losses = {"loss_captioning_0": loss_caption} return losses def loss_captions(self, outputs, targets, indices, num_masks, layer_id, extra): if layer_id >= self.top_x_layers['caption']: return {"loss_caption_0": 0} matched_tokens = [m[0] for m in indices] t_emb_class = torch.cat([extra['class_embeddings'][targets[bs]['labels'][m[1]]] for bs, m in enumerate(indices)]) t_hash_class = torch.cat([torch.tensor(targets[bs]['labels_hash'])[m[1]] for bs, m in enumerate(indices)]) # pred_captions denotes all unmatched object queries. unmatched_pred_captions = [] matched_pred_captions = [] for idx, m in enumerate(matched_tokens): unmatched_masks = torch.ones(outputs['pred_captions'].shape[1:-1]).bool() matched_masks = torch.zeros(outputs['pred_captions'].shape[1:-1]).bool() unmatched_masks[m] = False matched_masks[m] = True unmatched_pred_captions.append(outputs['pred_captions'][idx][unmatched_masks]) matched_pred_captions.append(outputs['pred_captions'][idx][matched_masks]) outputs['unmatched_pred_captions'] = unmatched_pred_captions v_emb_class = torch.cat(matched_pred_captions) v_emb_class = v_emb_class / (v_emb_class.norm(dim=-1, keepdim=True) + 1e-7) indices = self.matcher(outputs, targets, mode="caption_womask", extra={'temperature':extra['lang_logit']}) src_idx = self._get_src_permutation_idx(indices) t_emb = torch.cat([t['captions'][indices[bs][1]] for bs,t in enumerate(targets)]) t_hash = torch.cat([torch.tensor(t['captions_hash'])[indices[bs][1]] for bs,t in enumerate(targets)]) unmatched_pred_captions, _ = nested_tensor_from_tensor_list(unmatched_pred_captions).decompose() v_emb = unmatched_pred_captions[src_idx] v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) loss_contrast = ql_multi_contrastive_loss(torch.cat((v_emb, v_emb_class)), torch.cat((t_emb, t_emb_class)), torch.cat((t_hash, t_hash_class)), temperature=extra['lang_logit']) losses = {"loss_caption_0": loss_contrast} return losses def loss_masks(self, outputs, targets, indices, num_masks, layer_id, extra): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ if layer_id >= self.top_x_layers['mask']: return {"loss_mask_bce_0": 0, "loss_mask_dice_0": 0} assert "pred_masks" in outputs if indices is None or len(targets) == 0: loss = outputs['pred_masks'].sum() * 0.0 losses = {"loss_mask_bce_0": loss, "loss_mask_dice_0": loss} return losses src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] src_masks = src_masks[src_idx] masks = [t["masks"] for t in targets] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(src_masks) target_masks = target_masks[tgt_idx] # No need to upsample predictions as we are using normalized coordinates :) # N x 1 x H x W src_masks = src_masks[:, None] target_masks = target_masks[:, None] with torch.no_grad(): # sample point_coords point_coords = get_uncertain_point_coords_with_randomness( src_masks, lambda logits: calculate_uncertainty(logits), self.num_points, self.oversample_ratio, self.importance_sample_ratio, ).type(src_masks.dtype) # get gt labels point_labels = point_sample( target_masks, point_coords, align_corners=False, ).squeeze(1) point_logits = point_sample( src_masks, point_coords, align_corners=False, ).squeeze(1) losses = { "loss_mask_bce_0": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks), "loss_mask_dice_0": dice_loss_jit(point_logits, point_labels, num_masks), } del src_masks del target_masks return losses def loss_groundings(self, outputs, targets, indices, num_masks, layer_id, extra): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_gmasks" in outputs assert "pred_gtexts" in outputs if layer_id >= self.top_x_layers['grounding']: return {"loss_grounding_bce_0": 0, "loss_grounding_dice_0": 0, "loss_grounding_ce_0": 0} masks = [t["grounding_masks"] for t in targets] if indices is None or None in masks: loss = outputs['pred_gmasks'].sum() * 0.0 return {"loss_grounding_bce_0": loss, "loss_grounding_dice_0": loss, "loss_grounding_ce_0": loss} pred_logits = [] for b in range(len(indices)): t_emb = targets[b]['grounding_class_embs'] v_emb = outputs["pred_gtexts"][b] t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7) v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7) out_prob = vl_similarity(v_emb, t_emb, temperature=extra['lang_logit']) pred_logits += [out_prob] outputs['pred_logits'] = pred_logits indices = self.matcher(outputs, targets, mode='grounding', extra={'temperature':extra['lang_logit']}) src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_gmasks"] src_masks = src_masks[src_idx] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() target_masks = target_masks.to(src_masks) target_masks = target_masks[tgt_idx] # No need to upsample predictions as we are using normalized coordinates :) # N x 1 x H x W src_masks = src_masks[:, None] target_masks = target_masks[:, None] with torch.no_grad(): # sample point_coords point_coords = get_uncertain_point_coords_with_randomness( src_masks, lambda logits: calculate_uncertainty(logits), self.num_points, self.oversample_ratio, self.importance_sample_ratio, ).type(src_masks.dtype) # get gt labels point_labels = point_sample( target_masks, point_coords, align_corners=False, ).squeeze(1) point_logits = point_sample( src_masks, point_coords, align_corners=False, ).squeeze(1) losses = { "loss_grounding_bce_0": sigmoid_ce_loss_jit(point_logits, point_labels, len(src_masks)), "loss_grounding_dice_0": dice_loss_jit(point_logits, point_labels, len(src_masks)), } # compute query-token contrastive loss # ttk_emb = torch.cat([x['caption_tokens'] for x in targets], dim=0) # ttk_mask = torch.cat([x['caption_mask'] for x in targets], dim=0).float() # ttk_mask = ttk_mask * torch.cumsum(ttk_mask, dim=1) # vtk_emb = outputs['pred_captions'][:,:-1] # keep = torch.cat([x['caption_mask'] for x in targets], dim=0).bool() # ttk_emb = ttk_emb / (ttk_emb.norm(dim=-1, keepdim=True) + 1e-7) # vtk_emb = vtk_emb / (vtk_emb.norm(dim=-1, keepdim=True) + 1e-7) # logit_scale = extra['lang_encoder'].logit_scale.exp().clamp(max=100) # # prepare gt # gt = (torch.eye(vtk_emb.shape[0]).type_as(ttk_mask).unsqueeze(-1) * ttk_mask.unsqueeze(0).repeat(vtk_emb.shape[0], 1, 1))[:,keep].flatten(1) # gt = gt / (gt.sum(1, keepdim=True) + 1e-7) # # compute i2t loss # logits = logit_scale * (vtk_emb @ ttk_emb[keep].transpose(0, 1)).mean(1) # loss_contrast_fine_vt = SoftTargetCrossEntropy()(logits, gt) # # loss_contrast_fine = loss_contrast_fine_vt # i2t only # # compute t2i loss # bs, nq, _ = vtk_emb.shape # logits = logit_scale * (ttk_emb @ vtk_emb.flatten(0,1).transpose(0, 1)).reshape(bs,-1,bs,nq).mean(dim=-1)[keep,:] # loss_contrast_fine_tv = SoftTargetCrossEntropy()(logits, gt.t()) # # compute loss # loss_contrast_fine = (loss_contrast_fine_vt * 0.7 + loss_contrast_fine_tv * 0.3) # compute t2i loss loss_grd_ce = 0 for b in range(len(indices)): task = targets[b]['grounding_task'] pred_logit = outputs["pred_logits"][b] gt_logit = torch.zeros_like(pred_logit) select_idx = torch.stack((indices[b][0], indices[b][1])).tolist() gt_logit[select_idx] = 1 t_hash = torch.tensor(targets[b]['grounding_hash'], device=gt_logit.device) hash_table = torch.zeros((len(t_hash), len(t_hash)), device=gt_logit.device) for idx in range(0, len(hash_table)): hash_table[idx][t_hash==t_hash[idx]] = 1 hash_table = hash_table / hash_table.sum(-1, keepdim=True) gt_logit = gt_logit @ hash_table loss_grd_ce += self.grounding_weight[task]*torch.sum(-gt_logit.t() * F.log_softmax(pred_logit.t(), dim=-1), dim=-1).mean() loss_grd_ce = loss_grd_ce / len(indices) losses.update({"loss_grounding_ce_0": loss_grd_ce}) del src_masks del target_masks return losses def loss_spatials(self, outputs, targets, indices, num_masks, layer_id, extra): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_smasks" in outputs assert "pred_smaskembs" in outputs if layer_id >= self.top_x_layers['spatial']: loss = outputs['pred_smasks'].sum() * 0.0 loss_grd_ce = outputs["pred_smasks"].sum() * 0.0 return {"loss_spatial_bce_0": loss, "loss_spatial_dice_0": loss, "loss_spatial_ce_0": loss_grd_ce} gt_masks = [x['gt_spatial_masks'] for x in targets] # compute a keep index with batch size to avoid empty gt_masks stack_gt_mask = torch.cat(gt_masks) bs,_,_ = stack_gt_mask.shape stack_gt_mask = stack_gt_mask.view(bs,-1).sum(dim=-1) keep = stack_gt_mask > 0 # only keep sample contain positive mask if keep.sum() == 0: loss = outputs['pred_smasks'].sum() * 0.0 loss_grd_ce = outputs["pred_smasks"].sum() * 0.0 return {"loss_spatial_bce_0": loss, "loss_spatial_dice_0": loss, "loss_spatial_ce_0": loss_grd_ce} # mask embedding logits v_emb = outputs["pred_smaskembs"] # [bs, nq, 512] # pos mask s_emb = outputs["pred_pspatials"] # [bs, ns, 512] pred_logits = v_emb @ s_emb.transpose(1,2) outputs['pred_pos_logits'] = pred_logits # [bs, nq, 1] indices = self.matcher(outputs, targets, mode='spatial', extra={}) src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) # pos class loss pred_logit = torch.cat([o[:len(t['gt_spatial_masks'])] for o,t in zip(outputs["pred_pos_logits"].transpose(1,2), targets)]) gt_logit = torch.zeros_like(pred_logit) gt_logit = gt_logit[keep] _src_idx = [torch.arange(keep.sum(), device=src_idx[0].device), src_idx[1][keep.cpu()]] gt_logit[_src_idx] = 1 pred_logit = pred_logit[keep] loss_spa_ce_pos = torch.sum(-gt_logit * F.log_softmax(pred_logit, dim=-1), dim=-1).mean() # neg mask # s_emb = outputs["pred_nspatials"] # [bs, ns, 512] # neg_mask = (s_emb.sum(dim=list(range(1, len(s_emb.shape)))) != 0).float()[keep] # pred_logits = v_emb @ s_emb.transpose(1,2) # outputs['pred_neg_logits'] = pred_logits # [bs, nq, 1] # indices = self.matcher(outputs, targets, mode='spatial_pn', extra=extra) # src_idx = self._get_src_permutation_idx(indices) # tgt_idx = self._get_tgt_permutation_idx(indices) # src_masks_neg = outputs["pred_smasks"][src_idx][keep] # src_masks_neg = src_masks_neg*(neg_mask[:,None,None]) # src_masks_neg = src_masks_neg.clip(0) * (-1) # neg class loss # pred_logit = outputs["pred_neg_logits"] # gt_logit = torch.zeros_like(pred_logit) # gt_logit[src_idx] = 1 # bs,_,ns = pred_logit[keep].shape # pred_logit = pred_logit[keep].transpose(1,2).view(bs*ns,-1) # gt_logit = gt_logit[keep].transpose(1,2).view(bs*ns,-1) # loss_spa_ce_neg = (torch.sum(-gt_logit * F.log_softmax(pred_logit, dim=-1), dim=-1)*neg_mask).sum() / (neg_mask.sum()+1e-6) # recompute a keep index with matched tgt stack_gt_mask = nn.utils.rnn.pad_sequence(gt_masks, padding_value=-1).transpose(0,1)[tgt_idx] bs,_,_ = stack_gt_mask.shape target_masks = stack_gt_mask stack_gt_mask = stack_gt_mask.view(bs,-1).sum(dim=-1) keep = stack_gt_mask > 0 # only keep sample contain positive mask src_masks_pos = outputs["pred_smasks"][src_idx][keep] # TODO use valid to mask invalid areas due to padding in loss target_masks = target_masks.to(src_masks_pos) target_masks = target_masks[keep] # mul = extra['spatial_query_mode'][keep] # src_masks_cur = src_masks_cur.clip(0) * mul[:,None,None] # src_masks_cur = src_masks_cur # if neg_mask[0] == 1: # import cv2 # print(src_masks_pos.shape) # print(src_masks_neg.shape) # print(target_masks.shape) # # import pdb; pdb.set_trace() # v_pos_mask = (src_masks_pos[0].sigmoid() > 0.5).float().cpu().detach().numpy() * 255 # v_neg_mask = (_src_masks_neg[0].sigmoid() > 0.5).float().cpu().detach().numpy() * 255 # v_sum = ((src_masks_pos[0]-_src_masks_neg[0].clip(0)).sigmoid() > 0.5).float().cpu().detach().numpy() * 255 # v_gt = target_masks[0].float().cpu().detach().numpy() * 255 # cv2.imwrite('v_pos_mask.png', v_pos_mask) # cv2.imwrite('v_neg_mask.png', v_neg_mask) # cv2.imwrite('v_sum.png', v_sum) # cv2.imwrite('v_gt.png', v_gt) # import pdb; pdb.set_trace() # src_masks = (src_masks_pos + src_masks_neg)[:, None] src_masks = src_masks_pos[:, None] target_masks = target_masks[:, None] # debug visualization # with torch.no_grad(): # import cv2 # import numpy as np # v_src_masks = (F.interpolate(src_masks, size=target_masks.shape[-2:], mode='bilinear', align_corners=False).sigmoid() > 0.5).float().cpu().numpy()[:,0] * 255 # v_target_masks = target_masks.float().cpu().numpy()[:,0] * 255 # v_masks = np.concatenate([v_src_masks, v_target_masks], axis=2) # for i in range(len(src_masks)): # v1 = v_src_masks[i] # v2 = v_target_masks[i] # v = np.concatenate([v1,v2], axis=1) # cv2.imwrite('v{}.png'.format(i), v) # import pdb; pdb.set_trace() # visualization # VL.step() # v_img = batched_inputs[0]['image'].permute(1,2,0).cpu().numpy() # VL.add_image(v_img[:,:,::-1]) # candidate_masks = batched_inputs[0]['spatial_query']['rand_shape'].float().cpu().numpy() # gt_masks = batched_inputs[0]['spatial_query']['gt_masks'].float().cpu().numpy() # texts = ['cmask' for i in range(len(candidate_masks))] # VL.overlay_obj_mask_to_image(v_img[:,:,::-1], candidate_masks, texts) # texts = ['gmask' for i in range(len(candidate_masks))] # VL.overlay_obj_mask_to_image(v_img[:,:,::-1], gt_masks, texts) # import cv2 # for i in range(len(src_masks)): # visual_src_mask_cur = (src_masks_cur[i].sigmoid()>0.5).detach().float().cpu().numpy() * 255 # visual_src_mask_mem = (src_masks_mem[i].sigmoid()>0.5).detach().float().cpu().numpy() * 255 # visual_src_mask = (src_masks[i,0].sigmoid()>0.5).detach().float().cpu().numpy() * 255 # visual_target_mask = (target_masks[i,0].sigmoid()>0.5).detach().float().cpu().numpy() * 255 # cv2.imwrite('visual_src_mask_cur_{}_{}.png'.format(i, mul[i].item()), visual_src_mask_cur) # cv2.imwrite('visual_src_mask_mem_{}_{}.png'.format(i, mul[i].item()), visual_src_mask_mem) # cv2.imwrite('visual_src_mask_{}_{}.png'.format(i, mul[i].item()), visual_src_mask) # cv2.imwrite('visual_target_mask_{}_{}.png'.format(i, mul[i].item()), visual_target_mask) # import pdb; pdb.set_trace() with torch.no_grad(): # sample point_coords point_coords = get_uncertain_point_coords_with_randomness( src_masks, lambda logits: calculate_uncertainty(logits), self.num_points, self.oversample_ratio, self.importance_sample_ratio, ).type(src_masks.dtype) # get gt labels point_labels = point_sample( target_masks, point_coords, align_corners=False, ).squeeze(1) point_logits = point_sample( src_masks, point_coords, align_corners=False, ).squeeze(1) num_masks = len(src_masks) losses = { "loss_spatial_bce_0": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks), "loss_spatial_dice_0": dice_loss_jit(point_logits, point_labels, num_masks), } # losses.update({"loss_spatial_ce_0": loss_spa_ce_pos + loss_spa_ce_neg}) losses.update({"loss_spatial_ce_0": loss_spa_ce_pos}) del src_masks del target_masks return losses def loss_boxes(self, outputs, targets, indices, num_boxes, layer_id, extra): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ if layer_id >= self.top_x_layers['box']: return {"loss_bbox_0": 0, "loss_giou_0": 0} assert 'pred_boxes' in outputs if indices is None or len(targets) == 0: loss = outputs['pred_boxes'].sum() * 0.0 losses = {"loss_bbox_0": loss, "loss_giou_0": loss} return losses src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_boxes = outputs["pred_boxes"] src_boxes = src_boxes[src_idx].sigmoid() target_boxes = [t['boxes'] for t in targets] max_size = _max_by_axis([list(box.shape) for box in target_boxes]) max_size = [len(target_boxes)] + max_size empty_boxes = torch.zeros(max_size).to(src_boxes.device) for idx, tar_box in enumerate(target_boxes): empty_boxes[idx,:tar_box.shape[0],:] = tar_box target_boxes = empty_boxes[tgt_idx] # target_isthings = [t['is_things'] for t in targets] # max_size = _max_by_axis([list(lab.shape) for lab in target_isthings]) # max_size = [len(target_isthings)] + max_size # empty_lab = torch.zeros(max_size).to(src_boxes.device) # for idx, tar_thing in enumerate(target_isthings): # empty_lab[idx,:tar_thing.shape[0]] = tar_thing # target_isthings = empty_lab[tgt_idx] loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') losses = {} losses['loss_bbox_0'] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))) losses['loss_giou_0'] = loss_giou.sum() / num_boxes return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_masks, layer_id, extra): loss_map = { 'labels': self.loss_labels, 'masks': self.loss_masks, 'boxes': self.loss_boxes, 'captions': self.loss_captions, 'retrievals': self.loss_itc, 'captionings': self.loss_captionings, 'groundings': self.loss_groundings, 'labels_openimage': self.loss_labels_openimage, 'spatials': self.loss_spatials, } assert loss in loss_map, f"do you really want to compute {loss} loss?" return loss_map[loss](outputs, targets, indices, num_masks, layer_id, extra) def forward(self, outputs, targets, extra=None): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_masks = sum(len(t["labels"]) for t in targets) num_masks = torch.as_tensor( [num_masks], dtype=torch.float, device=next(iter(outputs_without_aux.values())).device ) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_masks) num_masks = torch.clamp(num_masks / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_masks, 0, extra)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "aux_outputs" in outputs: # NOTE: we reverse the aux_outputs so that the first is the second last layer for i, aux_outputs in enumerate(outputs["aux_outputs"][::-1]): indices = self.matcher(aux_outputs, targets) for loss in self.losses: l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks, (i+1), extra) l_dict = {k.replace('_0', f"_{i+1}"): v for k, v in l_dict.items()} losses.update(l_dict) return losses def forward_vlp(self, outputs, targets, extra=None): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ # Compute all the requested losses losses = {} num_masks = indices = None for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_masks, 0, extra)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "aux_outputs" in outputs: # NOTE: we reverse the aux_outputs so that the first is the second last layer for i, aux_outputs in enumerate(outputs["aux_outputs"][::-1]): for loss in self.losses: l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks, (i+1), extra) l_dict = {k.replace('_0', f"_{i+1}"): v for k, v in l_dict.items()} losses.update(l_dict) return losses def forward_grounding(self, outputs, targets, extra=None): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ # Compute all the requested losses losses = {} indices = [[] for i in range(len(targets))] # Compute the average number of target boxes accross all nodes, for normalization purposes num_masks = sum(len(t["grounding_masks"]) for t in targets) + 1e-7 num_masks = torch.as_tensor( [num_masks], dtype=torch.float, device=next(iter(outputs.values())).device ) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_masks) num_masks = torch.clamp(num_masks / get_world_size(), min=1).item() for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_masks, 0, extra)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "aux_outputs" in outputs: # NOTE: we reverse the aux_outputs so that the first is the second last layer for i, aux_outputs in enumerate(outputs["aux_outputs"][::-1]): for loss in self.losses: l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks, (i+1), extra) l_dict = {k.replace('_0', f"_{i+1}"): v for k, v in l_dict.items()} losses.update(l_dict) return losses def forward_openimage(self, outputs, targets, extra=None): """This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ neg_class_emb = all_gather_grad(torch.cat([x['neg_class_emb'] for x in targets])) neg_hash = all_gather_grad(torch.cat([x['neg_hash'] for x in targets])) extra['neg_class_emb'] = neg_class_emb extra['neg_hash'] = neg_hash outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} # Retrieve the matching between the outputs of the last layer and the targets indices, pred_logits = self.matcher.openimage_forward(outputs_without_aux, targets, extra=extra) outputs['pred_logits'] = pred_logits # Compute the average number of target boxes accross all nodes, for normalization purposes num_masks = sum(len(t["labels"]) for t in targets) num_masks = torch.as_tensor( [num_masks], dtype=torch.float, device=neg_class_emb.device ) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_masks) num_masks = torch.clamp(num_masks / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_masks, 0, extra)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "aux_outputs" in outputs: # NOTE: we reverse the aux_outputs so that the first is the second last layer for i, aux_outputs in enumerate(outputs["aux_outputs"][::-1]): indices, pred_logits = self.matcher.openimage_forward(aux_outputs, targets, extra=extra) aux_outputs['pred_logits'] = pred_logits for loss in self.losses: l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks, (i+1), extra) l_dict = {k.replace('_0', f"_{i+1}"): v for k, v in l_dict.items()} losses.update(l_dict) return losses def __repr__(self): head = "Criterion " + self.__class__.__name__ body = [ "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)), "losses: {}".format(self.losses), "weight_dict: {}".format(self.weight_dict), "num_classes: {}".format(self.num_classes), "eos_coef: {}".format(self.eos_coef), "num_points: {}".format(self.num_points), "oversample_ratio: {}".format(self.oversample_ratio), "importance_sample_ratio: {}".format(self.importance_sample_ratio), ] _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines)