# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou (xueyan@cs.wisc.edu) # -------------------------------------------------------- import pickle from distutils import log import torch import torch.nn.functional as F import torch.distributed as dist from einops import rearrange, repeat from timm.loss import SoftTargetCrossEntropy soft_cross_entropy = SoftTargetCrossEntropy() def is_dist_initialized(): return torch.distributed.is_initialized() def get_world_size(): if is_dist_initialized(): return torch.distributed.get_world_size() return 1 def get_rank(): if is_dist_initialized(): return dist.get_rank() return 0 def all_gather_grad(x): if get_world_size() > 1: all_x = [torch.zeros_like(x) for _ in range(get_world_size())] torch.distributed.all_gather(all_x, x) all_x[torch.distributed.get_rank()] = x x = torch.cat(all_x, dim=0) return x def vl_multilabel_contrastive_loss(image_feat, text_feat, temperature=1): """ Args: image_feat (torch.Tensor): shape [B, L1, C] # B: batch_size, L1: 1, C: 256 text_feat (torch.Tensor): shape [B, L2, C] # B:batch_size, L2: number of selected nouns, C: 256 Returns: """ # [B, L1, C], L1 = 1 # image_feat = F.normalize(image_feat, dim=-1) # [B, L2, C] # text_feat = F.normalize(text_feat, dim=-1) # HACK: normalize outside # [B, L1, L2] dist_per_img = image_feat @ rearrange(text_feat, 'b l c -> b c l') # [B, L2, L1] dist_per_text = text_feat @ rearrange(image_feat, 'b l c -> b c l') batch = image_feat.shape[0] img_len = image_feat.shape[1] text_len = text_feat.shape[1] # [B, L1, L2] pos_labels_batch_img = rearrange(torch.ones_like(dist_per_text) / dist_per_text.size(1), 'b l2 l1 -> b l1 l2') # [B, L2, L1] pos_labels_batch_text = rearrange(torch.ones_like(dist_per_img) / dist_per_img.size(1), 'b l1 l2 -> b l2 l1') image_x = rearrange(image_feat, 'b l c -> (b l) c') text_x = rearrange(text_feat, 'b l c -> (b l) c') logits_per_img = image_x @ all_gather_grad(text_x).t() logits_per_text = text_x @ all_gather_grad(image_x).t() # get label globally # [B, L1, B, L2, W] labels_per_img = F.one_hot( torch.ones(batch, img_len, batch, text_len, dtype=torch.long, device=image_x.device) * get_rank(), num_classes=get_world_size()).to(image_x.dtype) labels_per_img *= rearrange(pos_labels_batch_img, 'b l1 l2 -> b l1 1 l2 1') * repeat( torch.eye(batch, dtype=image_x.dtype, device=image_x.device), 'b1 b2 -> b1 1 b2 1 1') # [BxL1, WxBxL2] labels_per_img = rearrange(labels_per_img, 'b1 l1 b2 l2 w -> (b1 l1) (w b2 l2)') # [B, L2, B, L1, W] labels_per_text = F.one_hot( torch.ones(batch, text_len, batch, img_len, dtype=torch.long, device=text_x.device) * get_rank(), num_classes=get_world_size()).to(text_x.dtype) labels_per_text *= rearrange(pos_labels_batch_text, 'b l2 l1 -> b l2 1 l1 1') * repeat( torch.eye(batch, dtype=text_x.dtype, device=image_x.device), 'b2 b1 -> b2 1 b1 1 1') # [BxL2, WxBxL1] labels_per_text = rearrange(labels_per_text, 'b2 l2 b1 l1 w -> (b2 l2) (w b1 l1)') logit_scale = temperature.exp().clamp(max=100) loss_img = soft_cross_entropy(logit_scale * logits_per_img, labels_per_img) loss_text = soft_cross_entropy(logit_scale * logits_per_text, labels_per_text) loss = 0.5 * (loss_img + loss_text) return loss def vl_contrastive_loss(image_feat, text_feat, temperature=1): # if image_id or text_id is None, it should be None across all GPUs # image_feat = F.normalize(image_feat, dim=1) # text_feat = F.normalize(text_feat, dim=1) # handle normalization outside # add the following 4 lines image_feat = all_gather_grad(image_feat) text_feat = all_gather_grad(text_feat) logits = torch.matmul(image_feat, text_feat.t()) logit_scale = temperature.exp().clamp(max=100) gt = torch.arange(logits.shape[0], device=logits.device) loss1 = F.cross_entropy(logit_scale * logits, gt) loss2 = F.cross_entropy(logit_scale * logits.t(), gt) return (loss1 + loss2) / 2 # scale it up by the number of GPUs def all_gather_pickle(data, device): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device) # obtain Tensor size of each rank local_size = torch.LongTensor([tensor.numel()]) size_list = [torch.LongTensor([0]) for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)) ) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)) tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def all_gather_arbitary_tensor(tensor): if get_world_size() > 1: device = tensor.device tensor_batch = all_gather_pickle(tensor.cpu(), device) tensor_batch = [x.to(device) for x in tensor_batch] tensor_batch[torch.distributed.get_rank()] = tensor tensor_batch = torch.cat(tensor_batch, dim=0) else: tensor_batch = tensor return tensor_batch def ql_contrastive_loss(image_feat, text_feat, temperature=1): # add the following 4 lines image_feat = all_gather_arbitary_tensor(image_feat) text_feat = all_gather_arbitary_tensor(text_feat) logits = torch.matmul(image_feat, text_feat.t()) logit_scale = temperature.exp().clamp(max=100) gt = torch.arange(logits.shape[0], device=logits.device) loss1 = F.cross_entropy(logit_scale * logits, gt) loss2 = F.cross_entropy(logit_scale * logits.t(), gt) return (loss1 + loss2) / 2 # scale it up by the number of GPUs def vl_similarity(image_feat, text_feat, temperature=1): # Only support single GPU for now. logits = torch.matmul(image_feat, text_feat.t()) logits = temperature.exp().clamp(max=100) * logits return logits def ql_multi_contrastive_loss(image_feat, text_feat, text_hash, temperature=1): # add the following 4 lines image_feat = all_gather_arbitary_tensor(image_feat) text_feat = all_gather_arbitary_tensor(text_feat) text_hash_batch = all_gather_pickle(text_hash, text_feat.device) text_hash_all = torch.cat(text_hash_batch) text_hash_all_unique = torch.unique(text_hash_all).tolist() gt = torch.zeros((image_feat.shape[0], len(text_hash_all_unique)), device=text_feat.device) text_hash_all = text_hash_all.tolist() text_feat_unique = torch.stack([text_feat[text_hash_all.index(txt)] for txt in text_hash_all_unique]) for idx, txt in enumerate(text_hash_all): gt[idx][text_hash_all_unique.index(txt)] = 1 logits = torch.matmul(image_feat, text_feat_unique.t()) logits = logits*temperature.exp().clamp(max=100) loss_img = soft_cross_entropy(logits, gt) loss_text = soft_cross_entropy(logits.t(), gt.t() / gt.t().sum(-1, keepdim=True)) loss = 0.7 * loss_img + 0.3 * loss_text return loss def image_text_contrastive_loss_queue(image_feat_inp, text_feat_inp, lang_enc, training): # add the following 4 lines image_feat = all_gather_grad(image_feat_inp.contiguous()) text_feat = all_gather_grad(text_feat_inp.contiguous()) image_feat = image_feat / (image_feat.norm(dim=-1, keepdim=True) + 1e-7) text_feat = text_feat / (text_feat.norm(dim=-1, keepdim=True) + 1e-7) temperature = lang_enc.logit_scale logits = torch.matmul(image_feat, text_feat.t()) logit_scale = temperature.exp().clamp(max=100) gt = torch.arange(logits.shape[0], device=logits.device) loss1 = F.cross_entropy(logit_scale * logits, gt) loss2 = F.cross_entropy(logit_scale * logits.t(), gt) return (loss1 + loss2) / 2 # scale it up by the number of GPUs