# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Modified by Xueyan Zou (xueyan@cs.wisc.edu) # -------------------------------------------------------- import os import sys import torch import logging #import wandb import random import numpy as np from utilities.arguments import load_opt_command logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # def init_wandb(args, job_dir, entity='YOUR_USER_NAME', project='YOUR_PROJECT_NAME', job_name='tmp'): # wandb_dir = os.path.join(job_dir, 'wandb') # os.makedirs(wandb_dir, exist_ok=True) # runid = None # if os.path.exists(f"{wandb_dir}/runid.txt"): # runid = open(f"{wandb_dir}/runid.txt").read() # wandb.init(project=project, # name=job_name, # dir=wandb_dir, # entity=entity, # resume="allow", # id=runid, # config={"hierarchical": True},) # open(f"{wandb_dir}/runid.txt", 'w').write(wandb.run.id) # wandb.config.update({k: args[k] for k in args if k not in wandb.config}) def set_seed(seed: int = 42) -> None: np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # When running on the CuDNN backend, two further options must be set torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Set a fixed value for the hash seed os.environ["PYTHONHASHSEED"] = str(seed) print(f"Random seed set as {seed}") def main(args=None): ''' [Main function for the entry point] 1. Set environment variables for distributed training. 2. Load the config file and set up the trainer. ''' opt, cmdline_args = load_opt_command(args) command = cmdline_args.command if cmdline_args.user_dir: absolute_user_dir = os.path.abspath(cmdline_args.user_dir) opt['base_path'] = absolute_user_dir # update_opt(opt, command) world_size = 1 if 'OMPI_COMM_WORLD_SIZE' in os.environ: world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) if opt['TRAINER'] == 'xdecoder': from trainer import XDecoder_Trainer as Trainer else: assert False, "The trainer type: {} is not defined!".format(opt['TRAINER']) set_seed(opt['RANDOM_SEED']) trainer = Trainer(opt) os.environ['TORCH_DISTRIBUTED_DEBUG']='DETAIL' if command == "train": # if opt['rank'] == 0 and opt['WANDB']: # wandb.login(key=os.environ['WANDB_KEY']) # init_wandb(opt, trainer.save_folder, job_name=trainer.save_folder) trainer.train() elif command == "evaluate": trainer.eval() else: raise ValueError(f"Unknown command: {command}") if __name__ == "__main__": main() sys.exit(0)