from diffusers import StableDiffusionPipeline, DiffusionPipeline import torch import random from datetime import datetime from PIL import Image resolution = (512, 512) # Risoluzione dell'immagine (width, height) num_steps = 20 guidance_scale = 7.5 neg_prompt = "blurry" model_id = "stablediffusionapi/duchaiten-real3d-nsfw-xl" pipe = DiffusionPipeline.from_pretrained(model_id) # Imposta il dispositivo su GPU se disponibile device = "cuda" if torch.cuda.is_available() else "cpu" pipe = pipe.to(device) # Funzione per generare un'immagine def generate_image(prompt, neg_prompt, seed, steps): generator = torch.manual_seed(seed) image = pipe(prompt, height=resolution[1], width=resolution[0], num_inference_steps=steps, guidance_scale=guidance_scale, generator=generator, negative_prompt=neg_prompt).images[0] return image demo = gr.Interface( fn=generate_image, inputs=["text","text", "slider", "slider"], outputs=[gr.Image()], ) demo.launch()