satyanayak commited on
Commit
2bb12cf
·
1 Parent(s): 40384fa

first commit to test the transformer in spaces

Browse files
Files changed (3) hide show
  1. app.py +74 -0
  2. requirements.txt +5 -0
  3. transformer-basic.py +335 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import torch.nn.functional as F
4
+ import tiktoken
5
+ from huggingface_hub import hf_hub_download
6
+ from transformer-basic import GPT, GPTConfig # Import your model class
7
+
8
+ # Load the model from Hugging Face Hub
9
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
+ def load_model_from_hf():
11
+ # Replace with your Hugging Face model ID (username/model-name)
12
+ model_id = "satyanayak/transformer-basic"
13
+ checkpoint_path = hf_hub_download(repo_id=model_id, filename="trained_model.pt")
14
+
15
+ checkpoint = torch.load(checkpoint_path, map_location=device)
16
+ config = checkpoint['config']
17
+ model = GPT(config)
18
+ model.load_state_dict(checkpoint['model_state_dict'])
19
+ model.to(device)
20
+ model.eval()
21
+ return model
22
+
23
+ model = load_model_from_hf()
24
+
25
+ def generate_text(prompt, max_length=100, num_samples=1, temperature=0.8):
26
+ enc = tiktoken.get_encoding('gpt2')
27
+ tokens = enc.encode(prompt)
28
+ tokens = torch.tensor(tokens, dtype=torch.long)
29
+ tokens = tokens.unsqueeze(0).repeat(num_samples, 1)
30
+ tokens = tokens.to(device)
31
+
32
+ with torch.no_grad():
33
+ for _ in range(max_length):
34
+ if tokens.size(1) >= 1024: # GPT context length
35
+ break
36
+
37
+ logits = model(tokens)[0]
38
+ logits = logits[:, -1, :] / temperature
39
+ probs = F.softmax(logits, dim=-1)
40
+
41
+ # Top-k sampling
42
+ topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
43
+ ix = torch.multinomial(topk_probs, 1)
44
+ next_token = torch.gather(topk_indices, -1, ix)
45
+
46
+ tokens = torch.cat((tokens, next_token), dim=1)
47
+
48
+ # Check for end of text token
49
+ if next_token.item() == enc.encode('<|endoftext|>')[0]:
50
+ break
51
+
52
+ generated_texts = []
53
+ for i in range(num_samples):
54
+ text = enc.decode(tokens[i].tolist())
55
+ generated_texts.append(text)
56
+
57
+ return '\n\n---\n\n'.join(generated_texts)
58
+
59
+ # Create Gradio interface
60
+ iface = gr.Interface(
61
+ fn=generate_text,
62
+ inputs=[
63
+ gr.Textbox(label="Prompt", value="We are accounted poor citizens, the"),
64
+ gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
65
+ gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of Samples"),
66
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature")
67
+ ],
68
+ outputs=gr.Textbox(label="Generated Text"),
69
+ title="Shakespeare-style Text Generator",
70
+ description="Enter a prompt to generate Shakespeare-style text continuation"
71
+ )
72
+
73
+ if __name__ == "__main__":
74
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ gradio
3
+ tiktoken
4
+ transformers
5
+ huggingface_hub
transformer-basic.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Solving for residual std scaling issue
2
+ import os
3
+ import math
4
+ import time
5
+ import inspect
6
+ from dataclasses import dataclass
7
+ import torch
8
+ import torch.nn as nn
9
+ from torch.nn import functional as F
10
+
11
+
12
+ class CausalSelfAttention(nn.Module):
13
+
14
+ def __init__(self, config):
15
+ super().__init__()
16
+ assert config.n_embd % config.n_head == 0
17
+ # key, query, value projections for all heads, but in a batch
18
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
19
+ # output projection
20
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
21
+ self.c_proj.NANGPT_SCALE_INIT = 1
22
+ # regularization
23
+ self.n_head = config.n_head
24
+ self.n_embd = config.n_embd
25
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
26
+
27
+ def forward(self, x):
28
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
29
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
30
+ # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
31
+ # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
32
+ qkv = self.c_attn(x)
33
+ q, k, v = qkv.split(self.n_embd, dim=2)
34
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
35
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
36
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
37
+
38
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
39
+ att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
40
+ att = F.softmax(att, dim=-1)
41
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
42
+
43
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
44
+ # output projection
45
+ y = self.c_proj(y)
46
+ return y
47
+
48
+
49
+ class MLP(nn.Module):
50
+
51
+ def __init__(self, config):
52
+ super().__init__()
53
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
54
+ self.gelu = nn.GELU(approximate='tanh')
55
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
56
+ self.c_proj.NANOGPT_SCALE_INIT = 1
57
+
58
+ def forward(self, x):
59
+ x = self.c_fc(x)
60
+ x = self.gelu(x)
61
+ x = self.c_proj(x)
62
+ return x
63
+
64
+ class Block(nn.Module):
65
+
66
+ def __init__(self, config):
67
+ super().__init__()
68
+ self.ln_1 = nn.LayerNorm(config.n_embd)
69
+ self.attn = CausalSelfAttention(config)
70
+ self.ln_2 = nn.LayerNorm(config.n_embd)
71
+ self.mlp = MLP(config)
72
+
73
+ def forward(self, x):
74
+ x = x + self.attn(self.ln_1(x))
75
+ x = x + self.mlp(self.ln_2(x))
76
+ return x
77
+
78
+
79
+ @dataclass
80
+ class GPTConfig:
81
+ block_size: int = 1024 # max sequence length
82
+ vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
83
+ n_layer: int = 12 # number of layers
84
+ n_head: int = 12 # number of heads
85
+ n_embd: int = 768 # embedding dimension
86
+
87
+
88
+ class GPT(nn.Module):
89
+
90
+ def __init__(self, config):
91
+ super().__init__()
92
+ self.config = config
93
+
94
+ self.transformer = nn.ModuleDict(dict(
95
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
96
+ wpe = nn.Embedding(config.block_size, config.n_embd),
97
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
98
+ ln_f = nn.LayerNorm(config.n_embd),
99
+ ))
100
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
101
+
102
+ # weight sharing
103
+ self.transformer.wte.weight = self.lm_head.weight
104
+
105
+ # weight initialization
106
+ self.apply(self._init_weights)
107
+
108
+ def _init_weights(self, module):
109
+ if isinstance(module, nn.Linear):
110
+ std = 0.02
111
+ if hasattr(module, 'NANGPT_SCALE_INIT'):
112
+ std *= (2 * self.config.n_layer) ** -0.5
113
+ torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
114
+ if module.bias is not None:
115
+ torch.nn.init.zeros_(module.bias)
116
+ elif isinstance(module, nn.Embedding):
117
+ torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
118
+
119
+
120
+
121
+ def forward(self, idx, targets=None):
122
+ # idx is of shape (B, T)
123
+ B, T = idx.size()
124
+ assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
125
+ # forward the token and posisition embeddings
126
+ pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
127
+ pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
128
+ tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
129
+ x = tok_emb + pos_emb
130
+ # forward the blocks of the transformer
131
+ for block in self.transformer.h:
132
+ x = block(x)
133
+ # forward the final layernorm and the classifier
134
+ x = self.transformer.ln_f(x)
135
+ logits = self.lm_head(x) # (B, T, vocab_size)
136
+ loss = None
137
+ if targets is not None:
138
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
139
+ return logits, loss
140
+
141
+ @classmethod
142
+ def from_pretrained(cls, model_type):
143
+ """Loads pretrained GPT-2 model weights from huggingface"""
144
+ assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
145
+ from transformers import GPT2LMHeadModel
146
+ print("loading weights from pretrained gpt: %s" % model_type)
147
+
148
+ # n_layer, n_head and n_embd are determined from model_type
149
+ config_args = {
150
+ 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
151
+ 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
152
+ 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
153
+ 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
154
+ }[model_type]
155
+ config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
156
+ config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
157
+ # create a from-scratch initialized minGPT model
158
+ config = GPTConfig(**config_args)
159
+ model = GPT(config)
160
+ sd = model.state_dict()
161
+ sd_keys = sd.keys()
162
+ sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
163
+
164
+ # init a huggingface/transformers model
165
+ model_hf = GPT2LMHeadModel.from_pretrained(model_type)
166
+ sd_hf = model_hf.state_dict()
167
+
168
+ # copy while ensuring all of the parameters are aligned and match in names and shapes
169
+ sd_keys_hf = sd_hf.keys()
170
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
171
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
172
+ transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
173
+ # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
174
+ # this means that we have to transpose these weights when we import them
175
+ assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
176
+ for k in sd_keys_hf:
177
+ if any(k.endswith(w) for w in transposed):
178
+ # special treatment for the Conv1D weights we need to transpose
179
+ assert sd_hf[k].shape[::-1] == sd[k].shape
180
+ with torch.no_grad():
181
+ sd[k].copy_(sd_hf[k].t())
182
+ else:
183
+ # vanilla copy over the other parameters
184
+ assert sd_hf[k].shape == sd[k].shape
185
+ with torch.no_grad():
186
+ sd[k].copy_(sd_hf[k])
187
+
188
+ return model
189
+
190
+ # model = GPT.from_pretrained('gpt2')
191
+
192
+ device = 'cpu'
193
+ if torch.cuda.is_available():
194
+ device = 'cuda'
195
+ elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
196
+ device = "mps"
197
+ print(f"using device: {device}")
198
+
199
+ # SEED
200
+ torch.manual_seed(1337)
201
+ if torch.cuda.is_available():
202
+ torch.cuda.manual_seed(1337)
203
+
204
+ # STOP
205
+ num_return_sequences = 5
206
+ max_length = 30
207
+
208
+
209
+
210
+ import tiktoken
211
+
212
+ class DataLoaderLite:
213
+ def __init__(self, B, T):
214
+ self.B = B
215
+ self.T = T
216
+
217
+ # at init load tokens from disk and store them in memory
218
+ with open('input.txt', 'r') as f:
219
+ text = f.read()
220
+ enc = tiktoken.get_encoding('gpt2')
221
+ tokens = enc.encode(text)
222
+ self.tokens = torch.tensor(tokens)
223
+ print(f'loaded {len(self.tokens)} tokens')
224
+ print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
225
+
226
+ # state
227
+ self.current_position = 0
228
+
229
+ def next_batch(self):
230
+ B, T = self.B, self.T
231
+ buf = self.tokens[self.current_position: self.current_position + B * T + 1]
232
+ x = (buf[:-1]).view(B, T) # inputs
233
+ y = (buf[1:]).view(B, T) # targets
234
+ # advance the position in the tensor
235
+ self.current_position += B*T
236
+ # if loading the next batch would be out of bounds, reset
237
+ if self.current_position + (B * T + 1) > len(self.tokens):
238
+ self.current_position = 0
239
+ return x, y
240
+
241
+
242
+ model = GPT(GPTConfig())
243
+ model.to(device)
244
+
245
+ # Increase batch size slightly but keep it manageable
246
+ train_loader = DataLoaderLite(B=8, T=64)
247
+
248
+ # Calculate total steps for one cycle
249
+ total_steps = 10000
250
+ print(f"Training for {total_steps} steps")
251
+
252
+ # Initialize optimizer with more conservative parameters
253
+ optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0.1, betas=(0.9, 0.95))
254
+
255
+ # Use OneCycleLR scheduler
256
+ scheduler = torch.optim.lr_scheduler.OneCycleLR(
257
+ optimizer,
258
+ max_lr=3e-4,
259
+ total_steps=total_steps,
260
+ pct_start=0.1, # Warm up for 10% of steps
261
+ anneal_strategy='cos',
262
+ cycle_momentum=False,
263
+ div_factor=25.0, # Initial lr = max_lr/25
264
+ final_div_factor=10000.0, # Min lr = initial_lr/10000
265
+ )
266
+
267
+ # Training loop
268
+ best_loss = float('inf')
269
+ step = 0
270
+ losses = [] # Keep track of losses for monitoring
271
+ last_time = time.time()
272
+ interval = 10 # Print every 10 steps
273
+
274
+ while step < total_steps and best_loss > 0.099999:
275
+ x, y = train_loader.next_batch()
276
+ x, y = x.to(device), y.to(device)
277
+
278
+ optimizer.zero_grad()
279
+ logits, loss = model(x, y)
280
+ loss.backward()
281
+
282
+ # Gradient clipping
283
+ torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) # Reduced from 1.0
284
+
285
+ optimizer.step()
286
+ scheduler.step()
287
+
288
+ # Update best loss
289
+ if loss.item() < best_loss:
290
+ best_loss = loss.item()
291
+
292
+ losses.append(loss.item())
293
+
294
+ # Print progress
295
+ if step % interval == 0:
296
+ current_time = time.time()
297
+ time_per_batch = (current_time - last_time) / interval if step > 0 else 0
298
+ last_time = current_time
299
+
300
+ # Calculate average loss over last 100 steps for stability
301
+ avg_loss = sum(losses[-100:]) / min(len(losses), 100)
302
+
303
+ print(f'step {step}, '
304
+ f'loss: {loss.item():.4f}, '
305
+ f'avg_loss: {avg_loss:.4f}, '
306
+ f'best_loss: {best_loss:.4f}, '
307
+ f'lr: {scheduler.get_last_lr()[0]:.2e}, '
308
+ f'time/batch: {time_per_batch:.3f}s')
309
+
310
+ step += 1
311
+
312
+ print(f'Final loss: {loss.item():.6f}')
313
+ print(f'Best loss: {best_loss:.6f}')
314
+ print(f'Average of last 100 losses: {sum(losses[-100:]) / min(len(losses), 100):.6f}')
315
+
316
+ # Save the trained model
317
+ save_path = 'trained_model.pt'
318
+ torch.save({
319
+ 'model_state_dict': model.state_dict(),
320
+ 'optimizer_state_dict': optimizer.state_dict(),
321
+ 'scheduler_state_dict': scheduler.state_dict(),
322
+ 'best_loss': best_loss,
323
+ 'config': model.config,
324
+ }, save_path)
325
+ print(f"Model saved to {save_path}")
326
+
327
+ # Generation code
328
+ enc = tiktoken.get_encoding('gpt2')
329
+ prompt = "We are accounted poor citizens, the"
330
+ tokens = enc.encode(prompt)
331
+ tokens = torch.tensor(tokens, dtype=torch.long)
332
+ tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
333
+ x = tokens.to(device)
334
+
335
+ # Rest of generation code remains same...