Spaces:
Sleeping
Sleeping
Commit
·
de70513
1
Parent(s):
94625eb
debugging the new model
Browse files
app.py
CHANGED
@@ -2,7 +2,9 @@ import torch
|
|
2 |
import torchvision.transforms as transforms
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
|
|
5 |
import torchvision.models as models
|
|
|
6 |
|
7 |
# Load ImageNet class labels
|
8 |
with open('imagenet_classes.txt', 'r') as f:
|
@@ -19,30 +21,113 @@ def preprocess_image(image):
|
|
19 |
])
|
20 |
return transform(image).unsqueeze(0)
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def load_model():
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
# Prediction function
|
30 |
def predict(input_image):
|
31 |
try:
|
32 |
# Convert from BGR to RGB
|
33 |
input_image = Image.fromarray(input_image)
|
|
|
34 |
|
35 |
# Preprocess the image
|
36 |
input_tensor = preprocess_image(input_image)
|
|
|
37 |
|
38 |
# Make prediction
|
39 |
with torch.no_grad():
|
40 |
output = model(input_tensor)
|
|
|
|
|
|
|
41 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
|
|
42 |
|
43 |
# Get top 5 predictions
|
44 |
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
# Create result dictionary
|
47 |
results = {}
|
48 |
for i in range(5):
|
|
|
2 |
import torchvision.transforms as transforms
|
3 |
from PIL import Image
|
4 |
import gradio as gr
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
import torchvision.models as models
|
7 |
+
import os
|
8 |
|
9 |
# Load ImageNet class labels
|
10 |
with open('imagenet_classes.txt', 'r') as f:
|
|
|
21 |
])
|
22 |
return transform(image).unsqueeze(0)
|
23 |
|
24 |
+
def convert_state_dict(state_dict):
|
25 |
+
"""Convert Composer state dict to standard ResNet state dict."""
|
26 |
+
print("Original state dict keys:", list(state_dict.keys())[:5], "...")
|
27 |
+
|
28 |
+
new_state_dict = {}
|
29 |
+
for key, value in state_dict.items():
|
30 |
+
# Remove 'module.' prefix if it exists
|
31 |
+
if key.startswith('module.'):
|
32 |
+
key = key[7:] # Remove first 7 characters ('module.')
|
33 |
+
|
34 |
+
# Handle blur filter layers
|
35 |
+
if 'blur_filter' in key or 'filt2d' in key:
|
36 |
+
continue
|
37 |
+
|
38 |
+
# Convert conv layers with blur
|
39 |
+
if '.conv.weight' in key:
|
40 |
+
key = key.replace('.conv.weight', '.weight')
|
41 |
+
|
42 |
+
new_state_dict[key] = value
|
43 |
+
|
44 |
+
# Print shape information for debugging
|
45 |
+
print(f"Layer: {key}, Shape: {value.shape}")
|
46 |
+
|
47 |
+
print("\nConverted state dict keys:", list(new_state_dict.keys())[:5], "...")
|
48 |
+
return new_state_dict
|
49 |
+
|
50 |
+
# Load model from Hugging Face Hub
|
51 |
def load_model():
|
52 |
+
try:
|
53 |
+
repo_id = "satyanayak/imagenet-resnet50-composer-model"
|
54 |
+
filename = "pytorch_model_latest.bin"
|
55 |
+
|
56 |
+
print(f"Attempting to load model from {repo_id}/{filename}")
|
57 |
+
|
58 |
+
# Download the model file
|
59 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
60 |
+
print(f"Model downloaded to: {model_path}")
|
61 |
+
|
62 |
+
# Initialize standard ResNet50
|
63 |
+
print("Initializing ResNet50 model...")
|
64 |
+
model = models.resnet50(weights=None)
|
65 |
+
|
66 |
+
# Print model structure
|
67 |
+
print("\nModel structure:")
|
68 |
+
for name, module in model.named_children():
|
69 |
+
print(f"{name}: {module.__class__.__name__}")
|
70 |
+
|
71 |
+
# Load and convert the state dict
|
72 |
+
print("\nLoading state dict...")
|
73 |
+
state_dict = torch.load(
|
74 |
+
model_path,
|
75 |
+
map_location=torch.device('cpu'),
|
76 |
+
weights_only=True
|
77 |
+
)
|
78 |
+
|
79 |
+
print("\nConverting state dict...")
|
80 |
+
converted_state_dict = convert_state_dict(state_dict)
|
81 |
+
|
82 |
+
# Load the converted state dict
|
83 |
+
print("\nLoading weights into model...")
|
84 |
+
missing_keys, unexpected_keys = model.load_state_dict(converted_state_dict, strict=False)
|
85 |
+
|
86 |
+
if missing_keys:
|
87 |
+
print("\nMissing keys:", missing_keys)
|
88 |
+
if unexpected_keys:
|
89 |
+
print("\nUnexpected keys:", unexpected_keys)
|
90 |
+
|
91 |
+
model.eval()
|
92 |
+
print("\nModel loaded successfully!")
|
93 |
+
return model
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
print(f"\nError loading custom model: {str(e)}")
|
97 |
+
print("Stack trace:", e.__traceback__)
|
98 |
+
print("Falling back to pretrained ResNet50")
|
99 |
+
model = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V2)
|
100 |
+
model.eval()
|
101 |
+
return model
|
102 |
|
103 |
+
# Prediction function with debugging
|
104 |
def predict(input_image):
|
105 |
try:
|
106 |
# Convert from BGR to RGB
|
107 |
input_image = Image.fromarray(input_image)
|
108 |
+
print(f"Input image size: {input_image.size}")
|
109 |
|
110 |
# Preprocess the image
|
111 |
input_tensor = preprocess_image(input_image)
|
112 |
+
print(f"Preprocessed tensor shape: {input_tensor.shape}")
|
113 |
|
114 |
# Make prediction
|
115 |
with torch.no_grad():
|
116 |
output = model(input_tensor)
|
117 |
+
print(f"Raw output shape: {output.shape}")
|
118 |
+
print(f"Raw output values (first 5): {output[0][:5]}")
|
119 |
+
|
120 |
probabilities = torch.nn.functional.softmax(output[0], dim=0)
|
121 |
+
print(f"Probability values (first 5): {probabilities[:5]}")
|
122 |
|
123 |
# Get top 5 predictions
|
124 |
top5_prob, top5_catid = torch.topk(probabilities, 5)
|
125 |
|
126 |
+
# Print debugging info
|
127 |
+
print("\nTop 5 predictions:")
|
128 |
+
for i in range(5):
|
129 |
+
print(f"{categories[top5_catid[i]]}: {float(top5_prob[i]):.4f}")
|
130 |
+
|
131 |
# Create result dictionary
|
132 |
results = {}
|
133 |
for i in range(5):
|