satyanayak commited on
Commit
7a41953
·
1 Parent(s): 14ffee7

normal SD with concepts library

Browse files
Files changed (2) hide show
  1. app.py +87 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from torch import autocast
4
+ from diffusers import StableDiffusionPipeline
5
+ import random
6
+
7
+ # Initialize the model
8
+ model_id = "CompVis/stable-diffusion-v1-4"
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
+
11
+ # List of concept embeddings to use
12
+ concepts = [
13
+ "sd-concepts-library/sword-lily-flowers102",
14
+ "sd-concepts-library/azalea-flowers102",
15
+ "sd-concepts-library/samurai-jack",
16
+ "sd-concepts-library/wu-shi-art",
17
+ "sd-concepts-library/wu-shi"
18
+ ]
19
+
20
+ def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer):
21
+ loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
22
+
23
+ # Add the concept token to tokenizer
24
+ token = list(loaded_learned_embeds.keys())[0]
25
+ num_added_tokens = tokenizer.add_tokens(token)
26
+
27
+ # Resize token embeddings
28
+ text_encoder.resize_token_embeddings(len(tokenizer))
29
+
30
+ # Add the concept embedding
31
+ token_id = tokenizer.convert_tokens_to_ids(token)
32
+ text_encoder.get_input_embeddings().weight.data[token_id] = loaded_learned_embeds[token]
33
+
34
+ return token
35
+
36
+ def generate_images(prompt):
37
+ images = []
38
+
39
+ # Load base pipeline
40
+ pipe = StableDiffusionPipeline.from_pretrained(
41
+ model_id,
42
+ torch_dtype=torch.float16 if device == "cuda" else torch.float32
43
+ ).to(device)
44
+
45
+ for concept in concepts:
46
+ # Load concept embedding
47
+ token = load_learned_embed_in_clip(
48
+ f"{concept}/learned_embeds.bin",
49
+ pipe.text_encoder,
50
+ pipe.tokenizer
51
+ )
52
+
53
+ # Generate random seed
54
+ seed = random.randint(1, 999999)
55
+ generator = torch.Generator(device=device).manual_seed(seed)
56
+
57
+ # Add concept token to prompt
58
+ concept_prompt = f"{token} {prompt}"
59
+
60
+ # Generate image
61
+ with autocast(device):
62
+ image = pipe(
63
+ concept_prompt,
64
+ num_inference_steps=50,
65
+ generator=generator,
66
+ guidance_scale=7.5
67
+ ).images[0]
68
+
69
+ images.append(image)
70
+
71
+ # Clear concept from pipeline
72
+ pipe.tokenizer.remove_tokens([token])
73
+ pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer))
74
+
75
+ return images
76
+
77
+ # Create Gradio interface
78
+ iface = gr.Interface(
79
+ fn=generate_images,
80
+ inputs=gr.Textbox(label="Enter your prompt"),
81
+ outputs=[gr.Image() for _ in range(5)],
82
+ title="Multi-Concept Stable Diffusion Generator",
83
+ description="Generate images using 5 different concepts from the SD Concepts Library"
84
+ )
85
+
86
+ # Launch the app
87
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ diffusers
3
+ transformers
4
+ gradio