Spaces:
Running
Running
Commit
·
7a41953
1
Parent(s):
14ffee7
normal SD with concepts library
Browse files- app.py +87 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torch import autocast
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
+
import random
|
6 |
+
|
7 |
+
# Initialize the model
|
8 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# List of concept embeddings to use
|
12 |
+
concepts = [
|
13 |
+
"sd-concepts-library/sword-lily-flowers102",
|
14 |
+
"sd-concepts-library/azalea-flowers102",
|
15 |
+
"sd-concepts-library/samurai-jack",
|
16 |
+
"sd-concepts-library/wu-shi-art",
|
17 |
+
"sd-concepts-library/wu-shi"
|
18 |
+
]
|
19 |
+
|
20 |
+
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer):
|
21 |
+
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
|
22 |
+
|
23 |
+
# Add the concept token to tokenizer
|
24 |
+
token = list(loaded_learned_embeds.keys())[0]
|
25 |
+
num_added_tokens = tokenizer.add_tokens(token)
|
26 |
+
|
27 |
+
# Resize token embeddings
|
28 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
29 |
+
|
30 |
+
# Add the concept embedding
|
31 |
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
32 |
+
text_encoder.get_input_embeddings().weight.data[token_id] = loaded_learned_embeds[token]
|
33 |
+
|
34 |
+
return token
|
35 |
+
|
36 |
+
def generate_images(prompt):
|
37 |
+
images = []
|
38 |
+
|
39 |
+
# Load base pipeline
|
40 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
41 |
+
model_id,
|
42 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
43 |
+
).to(device)
|
44 |
+
|
45 |
+
for concept in concepts:
|
46 |
+
# Load concept embedding
|
47 |
+
token = load_learned_embed_in_clip(
|
48 |
+
f"{concept}/learned_embeds.bin",
|
49 |
+
pipe.text_encoder,
|
50 |
+
pipe.tokenizer
|
51 |
+
)
|
52 |
+
|
53 |
+
# Generate random seed
|
54 |
+
seed = random.randint(1, 999999)
|
55 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
56 |
+
|
57 |
+
# Add concept token to prompt
|
58 |
+
concept_prompt = f"{token} {prompt}"
|
59 |
+
|
60 |
+
# Generate image
|
61 |
+
with autocast(device):
|
62 |
+
image = pipe(
|
63 |
+
concept_prompt,
|
64 |
+
num_inference_steps=50,
|
65 |
+
generator=generator,
|
66 |
+
guidance_scale=7.5
|
67 |
+
).images[0]
|
68 |
+
|
69 |
+
images.append(image)
|
70 |
+
|
71 |
+
# Clear concept from pipeline
|
72 |
+
pipe.tokenizer.remove_tokens([token])
|
73 |
+
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer))
|
74 |
+
|
75 |
+
return images
|
76 |
+
|
77 |
+
# Create Gradio interface
|
78 |
+
iface = gr.Interface(
|
79 |
+
fn=generate_images,
|
80 |
+
inputs=gr.Textbox(label="Enter your prompt"),
|
81 |
+
outputs=[gr.Image() for _ in range(5)],
|
82 |
+
title="Multi-Concept Stable Diffusion Generator",
|
83 |
+
description="Generate images using 5 different concepts from the SD Concepts Library"
|
84 |
+
)
|
85 |
+
|
86 |
+
# Launch the app
|
87 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
diffusers
|
3 |
+
transformers
|
4 |
+
gradio
|