sathishO2 commited on
Commit
31a2e2a
·
verified ·
1 Parent(s): ab101b1

Upload 3 files

Browse files
Files changed (3) hide show
  1. Dockerfile +30 -0
  2. main.py +42 -0
  3. requirements.txt +4 -0
Dockerfile ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use Python 3.10.12 as the base image
2
+ FROM python:3.9.13
3
+
4
+ # Set the working directory to /code
5
+ WORKDIR /code
6
+
7
+ # Copy the requirements file into the container at /code/requirements.txt
8
+ COPY ./requirements.txt /code/requirements.txt
9
+
10
+ # Upgrade pip and install the dependencies
11
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
12
+
13
+ # Create a non-root user with UID 1000
14
+ RUN useradd -m -u 1000 user
15
+
16
+ # Switch to the non-root user
17
+ USER user
18
+
19
+ # Set environment variables for the user
20
+ ENV HOME=/home/user \
21
+ PATH=/home/user/.local/bin:$PATH
22
+
23
+ # Set the working directory for the application
24
+ WORKDIR $HOME/app
25
+
26
+ # Copy the local code into the container at /home/user/app
27
+ COPY --chown=user . $HOME/app
28
+
29
+ # Specify the command to run on container start
30
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
main.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, UploadFile, HTTPException, Body
2
+ from fastapi.responses import JSONResponse
3
+ from fastapi.middleware.cors import CORSMiddleware
4
+ from transformers import pipeline
5
+ from PIL import Image
6
+ import base64
7
+ from io import BytesIO
8
+
9
+ app = FastAPI()
10
+
11
+ # Load the image classification pipeline
12
+ classifier = pipeline(model="Diginsa/Plant-Disease-Detection-Project")
13
+
14
+ # CORS configuration
15
+ origins = [""] # Replace "" with the actual list of allowed origins
16
+
17
+ app.add_middleware(
18
+ CORSMiddleware,
19
+ allow_origins=origins,
20
+ allow_credentials=True,
21
+ allow_methods=["*"],
22
+ allow_headers=["*"],
23
+ )
24
+
25
+ # Endpoint to perform image classification
26
+ @app.post("/classify")
27
+ async def classify_image(encoded_image: str= Body(..., embed=True)):
28
+ try:
29
+ # Decode the base64 encoded image string
30
+ decoded_image = base64.b64decode(encoded_image)
31
+
32
+ # Create an Image object from the decoded content
33
+ image = Image.open(BytesIO(decoded_image))
34
+
35
+ # Use the classifier with the decoded image
36
+ result = classifier(images=image)
37
+
38
+ # Return the classification result as JSON
39
+ return JSONResponse(content=result, status_code=200)
40
+
41
+ except Exception as e:
42
+ raise HTTPException(status_code=500, detail=str(e))
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ fastapi
2
+ transformers
3
+ pillow
4
+ uvicorn