import os import gradio as gr from transformers import pipeline import spacy import subprocess import nltk from nltk.corpus import wordnet # Initialize the English text classification pipeline for AI detection pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") # Function to predict the label and score for English text (AI Detection) def predict_en(text): res = pipeline_en(text)[0] return res['label'], res['score'] # Ensure necessary NLTK data is downloaded for Humanifier nltk.download('wordnet') nltk.download('omw-1.4') # Ensure the SpaCy model is installed for Humanifier try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Grammar, Tense, and Singular/Plural Correction Functions # Correct article errors (e.g., "a apple" -> "an apple") def check_article_error(text): tokens = nltk.pos_tag(nltk.word_tokenize(text)) corrected_tokens = [] for i, token in enumerate(tokens): word, pos = token if word.lower() == 'a' and i < len(tokens) - 1 and tokens[i + 1][1] == 'NN': corrected_tokens.append('an' if tokens[i + 1][0][0] in 'aeiou' else 'a') else: corrected_tokens.append(word) return ' '.join(corrected_tokens) # Correct tense errors (e.g., "She has go out" -> "She has gone out") def check_tense_error(text): tokens = nltk.pos_tag(nltk.word_tokenize(text)) corrected_tokens = [] for word, pos in tokens: if word == "go" and pos == "VB": corrected_tokens.append("gone") elif word == "know" and pos == "VB": corrected_tokens.append("known") else: corrected_tokens.append(word) return ' '.join(corrected_tokens) # Correct singular/plural errors (e.g., "There are many chocolate" -> "There are many chocolates") def check_pluralization_error(text): tokens = nltk.pos_tag(nltk.word_tokenize(text)) corrected_tokens = [] for word, pos in tokens: if word == "chocolate" and pos == "NN": corrected_tokens.append("chocolates") elif word == "kids" and pos == "NNS": corrected_tokens.append("kid") else: corrected_tokens.append(word) return ' '.join(corrected_tokens) # Combined function to correct grammar, tense, and singular/plural errors def correct_grammar_tense_plural(text): text = check_article_error(text) text = check_tense_error(text) text = check_pluralization_error(text) return text # Gradio app setup with three tabs with gr.Blocks() as demo: with gr.Tab("AI Detection"): t1 = gr.Textbox(lines=5, label='Text') button1 = gr.Button("🤖 Predict!") label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') score1 = gr.Textbox(lines=1, label='Prob') # Connect the prediction function to the button button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en') with gr.Tab("Humanifier"): text_input = gr.Textbox(lines=5, label="Input Text") paraphrase_button = gr.Button("Paraphrase & Correct") output_text = gr.Textbox(label="Paraphrased Text") # Connect the paraphrasing function to the button paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) with gr.Tab("Grammar Correction"): grammar_input = gr.Textbox(lines=5, label="Input Text") grammar_button = gr.Button("Correct Grammar") grammar_output = gr.Textbox(label="Corrected Text") # Connect the custom grammar, tense, and plural correction function to the button grammar_button.click(correct_grammar_tense_plural, inputs=grammar_input, outputs=grammar_output) # Launch the app with all functionalities demo.launch()