Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,68 +1,150 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import spacy
|
|
|
4 |
import nltk
|
5 |
from nltk.corpus import wordnet
|
6 |
-
from nltk.stem import WordNetLemmatizer
|
7 |
-
from collections import defaultdict
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
nltk.download('wordnet')
|
11 |
-
nltk.download('
|
12 |
-
nltk.download('punkt')
|
13 |
|
14 |
-
# Ensure the SpaCy model is installed for
|
15 |
try:
|
16 |
nlp = spacy.load("en_core_web_sm")
|
17 |
except OSError:
|
18 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
19 |
nlp = spacy.load("en_core_web_sm")
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# Function to correct tense, singular/plural, and verb forms
|
38 |
-
def grammar_correction(text):
|
39 |
-
words = nltk.word_tokenize(text)
|
40 |
-
tagged = nltk.pos_tag(words)
|
41 |
-
|
42 |
corrected_text = []
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
else:
|
53 |
-
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
with gr.Tab("Grammar Correction"):
|
60 |
grammar_input = gr.Textbox(lines=5, label="Input Text")
|
61 |
grammar_button = gr.Button("Correct Grammar")
|
62 |
grammar_output = gr.Textbox(label="Corrected Text")
|
63 |
|
64 |
-
# Connect the grammar correction function to the button
|
65 |
-
grammar_button.click(
|
66 |
|
67 |
-
# Launch the app
|
68 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import spacy
|
4 |
+
import subprocess
|
5 |
import nltk
|
6 |
from nltk.corpus import wordnet
|
|
|
|
|
7 |
|
8 |
+
# Clone and install CorrectLy
|
9 |
+
def install_correctly():
|
10 |
+
if not os.path.exists('CorrectLy'):
|
11 |
+
print("Cloning CorrectLy repository...")
|
12 |
+
subprocess.run(["git", "clone", "https://github.com/rounakdatta/CorrectLy.git"], check=True)
|
13 |
+
|
14 |
+
# Install dependencies from CorrectLy
|
15 |
+
subprocess.run([sys.executable, "-m", "pip", "install", "-r", "CorrectLy/requirements.txt"], check=True)
|
16 |
+
|
17 |
+
# Add CorrectLy to Python path
|
18 |
+
sys.path.append(os.path.abspath('CorrectLy'))
|
19 |
+
|
20 |
+
# Install CorrectLy
|
21 |
+
install_correctly()
|
22 |
+
|
23 |
+
# Import CorrectLy after installation
|
24 |
+
from CorrectLy.correctly import CorrectLy
|
25 |
+
|
26 |
+
# Initialize CorrectLy for grammar correction
|
27 |
+
corrector = CorrectLy()
|
28 |
+
|
29 |
+
# Initialize the English text classification pipeline for AI detection
|
30 |
+
from transformers import pipeline
|
31 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
32 |
+
|
33 |
+
# Function to predict the label and score for English text (AI Detection)
|
34 |
+
def predict_en(text):
|
35 |
+
res = pipeline_en(text)[0]
|
36 |
+
return res['label'], res['score']
|
37 |
+
|
38 |
+
# Ensure necessary NLTK data is downloaded for Humanifier
|
39 |
nltk.download('wordnet')
|
40 |
+
nltk.download('omw-1.4')
|
|
|
41 |
|
42 |
+
# Ensure the SpaCy model is installed for Humanifier
|
43 |
try:
|
44 |
nlp = spacy.load("en_core_web_sm")
|
45 |
except OSError:
|
46 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
47 |
nlp = spacy.load("en_core_web_sm")
|
48 |
|
49 |
+
# Function to correct grammar using CorrectLy
|
50 |
+
def correct_grammar_with_correctly(text):
|
51 |
+
return corrector.correct(text)
|
52 |
+
|
53 |
+
# Function to get synonyms using NLTK WordNet (Humanifier)
|
54 |
+
def get_synonyms_nltk(word, pos):
|
55 |
+
synsets = wordnet.synsets(word, pos=pos)
|
56 |
+
if synsets:
|
57 |
+
lemmas = synsets[0].lemmas()
|
58 |
+
return [lemma.name() for lemma in lemmas]
|
59 |
+
return []
|
60 |
+
|
61 |
+
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
62 |
+
def capitalize_sentences_and_nouns(text):
|
63 |
+
doc = nlp(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
corrected_text = []
|
65 |
+
|
66 |
+
for sent in doc.sents:
|
67 |
+
sentence = []
|
68 |
+
for token in sent:
|
69 |
+
if token.i == sent.start: # First word of the sentence
|
70 |
+
sentence.append(token.text.capitalize())
|
71 |
+
elif token.pos_ == "PROPN": # Proper noun
|
72 |
+
sentence.append(token.text.capitalize())
|
73 |
+
else:
|
74 |
+
sentence.append(token.text)
|
75 |
+
corrected_text.append(' '.join(sentence))
|
76 |
+
|
77 |
+
return ' '.join(corrected_text)
|
78 |
+
|
79 |
+
# Paraphrasing function using SpaCy and NLTK (Humanifier)
|
80 |
+
def paraphrase_with_spacy_nltk(text):
|
81 |
+
doc = nlp(text)
|
82 |
+
paraphrased_words = []
|
83 |
+
|
84 |
+
for token in doc:
|
85 |
+
# Map SpaCy POS tags to WordNet POS tags
|
86 |
+
pos = None
|
87 |
+
if token.pos_ in {"NOUN"}:
|
88 |
+
pos = wordnet.NOUN
|
89 |
+
elif token.pos_ in {"VERB"}:
|
90 |
+
pos = wordnet.VERB
|
91 |
+
elif token.pos_ in {"ADJ"}:
|
92 |
+
pos = wordnet.ADJ
|
93 |
+
elif token.pos_ in {"ADV"}:
|
94 |
+
pos = wordnet.ADV
|
95 |
|
96 |
+
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
97 |
+
|
98 |
+
# Replace with a synonym only if it makes sense
|
99 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
|
100 |
+
paraphrased_words.append(synonyms[0])
|
101 |
else:
|
102 |
+
paraphrased_words.append(token.text)
|
103 |
|
104 |
+
# Join the words back into a sentence
|
105 |
+
paraphrased_sentence = ' '.join(paraphrased_words)
|
106 |
+
|
107 |
+
# Capitalize sentences and proper nouns
|
108 |
+
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
|
109 |
+
|
110 |
+
return corrected_text
|
111 |
|
112 |
+
# Combined function: Paraphrase -> Capitalization (Humanifier)
|
113 |
+
def paraphrase_and_correct(text):
|
114 |
+
# Step 1: Paraphrase the text
|
115 |
+
paraphrased_text = paraphrase_with_spacy_nltk(text)
|
116 |
+
|
117 |
+
# Step 2: Capitalize sentences and proper nouns
|
118 |
+
final_text = capitalize_sentences_and_nouns(paraphrased_text)
|
119 |
+
|
120 |
+
return final_text
|
121 |
+
|
122 |
+
# Gradio app setup with three tabs
|
123 |
with gr.Blocks() as demo:
|
124 |
+
with gr.Tab("AI Detection"):
|
125 |
+
t1 = gr.Textbox(lines=5, label='Text')
|
126 |
+
button1 = gr.Button("🤖 Predict!")
|
127 |
+
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
128 |
+
score1 = gr.Textbox(lines=1, label='Prob')
|
129 |
+
|
130 |
+
# Connect the prediction function to the button
|
131 |
+
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
|
132 |
+
|
133 |
+
with gr.Tab("Humanifier"):
|
134 |
+
text_input = gr.Textbox(lines=5, label="Input Text")
|
135 |
+
paraphrase_button = gr.Button("Paraphrase & Correct")
|
136 |
+
output_text = gr.Textbox(label="Paraphrased Text")
|
137 |
+
|
138 |
+
# Connect the paraphrasing function to the button
|
139 |
+
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
140 |
+
|
141 |
with gr.Tab("Grammar Correction"):
|
142 |
grammar_input = gr.Textbox(lines=5, label="Input Text")
|
143 |
grammar_button = gr.Button("Correct Grammar")
|
144 |
grammar_output = gr.Textbox(label="Corrected Text")
|
145 |
|
146 |
+
# Connect the CorrectLy grammar correction function to the button
|
147 |
+
grammar_button.click(correct_grammar_with_correctly, inputs=grammar_input, outputs=grammar_output)
|
148 |
|
149 |
+
# Launch the app with all functionalities
|
150 |
demo.launch()
|