Abigail
commited on
Commit
·
5817c5e
1
Parent(s):
1f2d661
first commit tts and stt with multiple stt possibilities
Browse files- .DS_Store +0 -0
- stttotts.py +177 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
stttotts.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""sttToTts.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/15QqRKFSwfhRdnaj5-R1z6xFfeEOOta38
|
8 |
+
"""
|
9 |
+
|
10 |
+
#text-to-speech and speech to text
|
11 |
+
!pip install TTS
|
12 |
+
!pip install transformers
|
13 |
+
|
14 |
+
#text to speech
|
15 |
+
from TTS.api import TTS
|
16 |
+
tts = TTS("tts_models/multilingual/multi-dataset/your_tts", cs_api_model = "TTS.cs_api.CS_API", gpu=True)
|
17 |
+
|
18 |
+
#voice recording
|
19 |
+
import IPython.display
|
20 |
+
import google.colab.output
|
21 |
+
import base64
|
22 |
+
# all imports for voice recording
|
23 |
+
from IPython.display import Javascript
|
24 |
+
from google.colab import output
|
25 |
+
from base64 import b64decode
|
26 |
+
|
27 |
+
#to record sound, found on https://gist.github.com/korakot/c21c3476c024ad6d56d5f48b0bca92be
|
28 |
+
|
29 |
+
RECORD = """
|
30 |
+
const sleep = time => new Promise(resolve => setTimeout(resolve, time))
|
31 |
+
const b2text = blob => new Promise(resolve => {
|
32 |
+
const reader = new FileReader()
|
33 |
+
reader.onloadend = e => resolve(e.srcElement.result)
|
34 |
+
reader.readAsDataURL(blob)
|
35 |
+
})
|
36 |
+
var record = time => new Promise(async resolve => {
|
37 |
+
stream = await navigator.mediaDevices.getUserMedia({ audio: true })
|
38 |
+
recorder = new MediaRecorder(stream)
|
39 |
+
chunks = []
|
40 |
+
recorder.ondataavailable = e => chunks.push(e.data)
|
41 |
+
recorder.start()
|
42 |
+
await sleep(time)
|
43 |
+
recorder.onstop = async ()=>{
|
44 |
+
blob = new Blob(chunks)
|
45 |
+
text = await b2text(blob)
|
46 |
+
resolve(text)
|
47 |
+
}
|
48 |
+
recorder.stop()
|
49 |
+
})
|
50 |
+
"""
|
51 |
+
|
52 |
+
def record(name, sec):
|
53 |
+
display(Javascript(RECORD))
|
54 |
+
s = output.eval_js('record(%d)' % (sec*1000))
|
55 |
+
b = b64decode(s.split(',')[1])
|
56 |
+
with open(f'{name}.webm','wb') as f:
|
57 |
+
f.write(b)
|
58 |
+
return (f'{name}.webm') # or webm ?
|
59 |
+
|
60 |
+
#to record the text which is going to be transcribed
|
61 |
+
record('audio', sec = 10)
|
62 |
+
|
63 |
+
#works -- speech-to-text with an audio I provide the path to reach
|
64 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
65 |
+
import librosa
|
66 |
+
|
67 |
+
# load model and processor
|
68 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
69 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
70 |
+
model.config.forced_decoder_ids = None
|
71 |
+
|
72 |
+
# load audio from a specific path
|
73 |
+
audio_path = "audio.webm"
|
74 |
+
audio_array, sampling_rate = librosa.load(audio_path, sr=16000) # "sr=16000" ensures that the sampling rate is as required
|
75 |
+
|
76 |
+
|
77 |
+
# process the audio array
|
78 |
+
input_features = processor(audio_array, sampling_rate, return_tensors="pt").input_features
|
79 |
+
|
80 |
+
|
81 |
+
predicted_ids = model.generate(input_features)
|
82 |
+
|
83 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
84 |
+
print(transcription)
|
85 |
+
|
86 |
+
#to record the speaker's voice used for tts
|
87 |
+
record('speaker', sec = 10 )
|
88 |
+
|
89 |
+
#library to convert digits to words (ex : 1 --> one)
|
90 |
+
import locale
|
91 |
+
locale.getpreferredencoding = lambda: "UTF-8"
|
92 |
+
!pip install inflect
|
93 |
+
|
94 |
+
import re
|
95 |
+
import inflect
|
96 |
+
#because numbers under digit format are ignored otherwise
|
97 |
+
def convert_numbers_to_words(s):
|
98 |
+
p = inflect.engine()
|
99 |
+
# Find all sequences of digits in the string
|
100 |
+
numbers = re.findall(r'\d+', s)
|
101 |
+
for number in numbers:
|
102 |
+
# Convert each number to words
|
103 |
+
words = p.number_to_words(number)
|
104 |
+
# Replace the original number in the string with its word representation
|
105 |
+
s = s.replace(number, words)
|
106 |
+
return s
|
107 |
+
|
108 |
+
#model test 1 for text to speech
|
109 |
+
#works - text to speech with voice cloner (by providing the path to the audio where the voice is)
|
110 |
+
from google.colab import drive
|
111 |
+
from IPython.display import Audio
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
tts.tts_to_file(text=convert_numbers_to_words(str(transcription)),
|
116 |
+
file_path="output.wav",
|
117 |
+
speaker_wav='speaker.webm',
|
118 |
+
language="en",
|
119 |
+
emotion ='angry',
|
120 |
+
speed = 2)
|
121 |
+
audio_path = "output.wav"
|
122 |
+
Audio(audio_path)
|
123 |
+
|
124 |
+
#model test 2 for text to speech
|
125 |
+
from IPython.display import Audio
|
126 |
+
# TTS with on the fly voice conversion
|
127 |
+
api = TTS("tts_models/deu/fairseq/vits")
|
128 |
+
api.tts_with_vc_to_file(
|
129 |
+
text="Wie sage ich auf Italienisch, dass ich dich liebe?",
|
130 |
+
speaker_wav="speaker.webm",
|
131 |
+
file_path="ouptut.wav"
|
132 |
+
)
|
133 |
+
audio_path = "output.wav"
|
134 |
+
Audio(audio_path)
|
135 |
+
|
136 |
+
#model test 3 for text to speech
|
137 |
+
from TTS.api import TTS
|
138 |
+
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True)
|
139 |
+
|
140 |
+
from IPython.display import Audio
|
141 |
+
|
142 |
+
|
143 |
+
# generate speech by cloning a voice using custom settings
|
144 |
+
tts.tts_to_file(text="But for me to rap like a computer it must be in my genes I got a laptop in my back pocket My pen'll go off when I half-cock it Got a fat knot from that rap profit Made a livin' and a killin' off it Ever since Bill Clinton was still in office with Monica Lewinsky feelin' on his nutsack I'm an MC still as honest",
|
145 |
+
file_path="output.wav",
|
146 |
+
speaker_wav="Slide 1.m4a",
|
147 |
+
language="en",
|
148 |
+
emotion = "neutral",
|
149 |
+
decoder_iterations=35)
|
150 |
+
|
151 |
+
audio_path = "output.wav"
|
152 |
+
Audio(audio_path)
|
153 |
+
|
154 |
+
# Init TTS with the target studio speaker
|
155 |
+
tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False)
|
156 |
+
# Run TTS
|
157 |
+
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH)
|
158 |
+
# Run TTS with emotion and speed control
|
159 |
+
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5)
|
160 |
+
|
161 |
+
#model test 4 for text to speech
|
162 |
+
from IPython.display import Audio
|
163 |
+
|
164 |
+
from TTS.api import TTS
|
165 |
+
#api = TTS(model_name="tts_models/eng/fairseq/vits").to("cuda")
|
166 |
+
#api.tts_to_file("This is a test.", file_path="output.wav")
|
167 |
+
|
168 |
+
# TTS with on the fly voice conversion
|
169 |
+
api = TTS("tts_models/deu/fairseq/vits")
|
170 |
+
api.tts_with_vc_to_file(
|
171 |
+
"I am a basic human",
|
172 |
+
speaker_wav="speaker.webm",
|
173 |
+
file_path="output.wav"
|
174 |
+
)
|
175 |
+
|
176 |
+
audio_path = "output.wav"
|
177 |
+
Audio(audio_path)
|