import numpy as np import gradio as gr from sentence_transformers import SentenceTransformer, util # Function to load the selected model def load_model(model_name): return SentenceTransformer(model_name) # Function to compute similarity and classify relationship def predict(model_name_display, original_sentence_input, sentence_1=None, sentence_2=None, sentence_3=None, sentence_4=None, sentence_5=None): model_name = "sartifyllc/African-Cross-Lingua-Embeddings-Model" model = load_model(model_name) result = { "Model Name": model_name, "Original Sentence": original_sentence_input, "Sentences to Compare": { "Sentence 1": sentence_1, "Sentence 2": sentence_2, "Sentence 3": sentence_3, "Sentence 4": sentence_4, "Sentence 5": sentence_5 }, "Similarity Scores": {} } if not sentence_1 or not sentence_2 or not sentence_3: return "Please provide a minimum of three sentences for comparison.", {} if not original_sentence_input: return "Please provide the original sentence.", {} sentences = [original_sentence_input, sentence_1, sentence_2, sentence_3,sentence_4,sentence_5] embeddings = model.encode(sentences) similarities = util.cos_sim(embeddings[0], embeddings[1:]) similarity_scores = { "Sentence 1": float(similarities[0, 0]), "Sentence 2": float(similarities[0, 1]), "Sentence 3": float(similarities[0, 2]), "Sentence 4": float(similarities[0, 3]), "Sentence 5": float(similarities[0, 4]), } result["Similarity Scores"] = similarity_scores return result model_name_display = gr.Markdown(value="**Model Name**: sartifyllc/African-Cross-Lingua-Embeddings-Model") original_sentence_input = gr.Textbox(lines=2, placeholder="Enter the original sentence here...", label="Original Sentence") sentence_1 = gr.Textbox(lines=2, placeholder="Enter the sentence to compare here...", label="Sentence 1") sentence_2 = gr.Textbox(lines=2, placeholder="Enter the sentence to compare here...", label="Sentence 2") sentence_3 = gr.Textbox(lines=2, placeholder="Enter the sentence to compare here...", label="Sentence 3") sentence_4 = gr.Textbox(lines=2, placeholder="Enter the sentence to compare here...", label="Sentence 4") sentence_5 = gr.Textbox(lines=2, placeholder="Enter the sentence to compare here...", label="Sentence 5") inputs = [model_name_display, original_sentence_input, sentence_1, sentence_2, sentence_3,sentence_4,sentence_5] outputs = gr.JSON(label="Detailed Similarity Scores") # Create Gradio interface gr.Interface( fn=predict, title="African Cross-Lingua Embeddings Model's Demo", description="Compute the semantic similarity across various sentences among any African Languages using African-Cross-Lingua-Embeddings-Model.", inputs=inputs, outputs=outputs, cache_examples=False, article="Author: Innocent Charles. Model from Hugging Face Hub (sartify.com): [sartifyllc/African-Cross-Lingua-Embeddings-Model](https://huggingface.co/sartifyllc/African-Cross-Lingua-Embeddings-Model)", examples = [ [ "sartifyllc/African-Cross-Lingua-Embeddings-Model", "Jua linawaka sana leo.", "Òrùlé jẹ́ tí ó ti máa ń tan-ìmólẹ̀ lónìí.", "Ran na haske sosai yau.", "The sun is shining brightly today.", "napenda sana jua", "schooling is kinda boring, I don't like it" ], [ "sartifyllc/African-Cross-Lingua-Embeddings-Model", "Mbuzi anaruka juu ya uzio.", "Àgbò ohun ti ń kọjú wá sórí orí-ọ̀kẹ́.", "Kura mai sauri tana tsalle kan kare mai barci.", "The goat is jumping over the fence.", "Àgbò ohun ti ń kọjú wá sórí orí-ọ̀kẹ́.", "The cat is sleeping under the table." ], [ "sartifyllc/African-Cross-Lingua-Embeddings-Model", "Ninapenda kujifunza lugha mpya.", "Mo nífẹ̀ẹ́ láti kọ́ èdè tuntun.", "Ina son koyon sababbin harsuna.", "I love learning new languages.", "Ina son koyon sababbin harsuna.", "botu neyle ki lo no" ] ] ).launch(debug=True, share=True)