Spaces:
Running
Running
import torch | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import pipeline | |
import logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
class ModelManager: | |
def __init__(self): | |
self.toxicity_model = None | |
self.toxicity_tokenizer = None | |
self.quality_model = None | |
self.quality_tokenizer = None | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
logging.info(f"Using device: {self.device}") | |
def load_toxicity_model(self, model_name="savasy/bert-base-turkish-sentiment"): | |
""" | |
Zararlılık tespiti için model yükleme | |
""" | |
try: | |
logging.info(f"Loading toxicity model: {model_name}") | |
self.toxicity_tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.toxicity_model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
logging.info("Toxicity model loaded successfully") | |
return True | |
except Exception as e: | |
logging.error(f"Error loading toxicity model: {str(e)}") | |
# Alternatif model deneyelim | |
try: | |
backup_model = "dbmdz/bert-base-turkish-cased" | |
logging.info(f"Trying backup Turkish model: {backup_model}") | |
self.toxicity_tokenizer = AutoTokenizer.from_pretrained(backup_model) | |
self.toxicity_model = AutoModelForSequenceClassification.from_pretrained(backup_model) | |
logging.info("Backup Turkish model loaded successfully") | |
return True | |
except Exception as e2: | |
logging.error(f"Error loading backup Turkish model: {str(e2)}") | |
try: | |
english_model = "distilbert/distilbert-base-uncased-finetuned-sst-2-english" | |
logging.info(f"Trying English sentiment model: {english_model}") | |
self.toxicity_tokenizer = AutoTokenizer.from_pretrained(english_model) | |
self.toxicity_model = AutoModelForSequenceClassification.from_pretrained(english_model) | |
logging.info("English sentiment model loaded successfully") | |
return True | |
except Exception as e3: | |
logging.error(f"Error loading English model: {str(e3)}") | |
return False | |
def load_quality_model(self, model_name="sshleifer/distilbart-cnn-6-6"): | |
""" | |
Metin kalitesi değerlendirmesi için model yükleme (özetleme kapasitesi olan bir model) | |
""" | |
try: | |
logging.info(f"Loading quality model: {model_name}") | |
self.quality_pipeline = pipeline( | |
"text2text-generation", | |
model=model_name, | |
tokenizer=model_name, | |
device=0 if self.device == "cuda" else -1 | |
) | |
logging.info("Quality model loaded successfully") | |
return True | |
except Exception as e: | |
logging.error(f"Error loading quality model: {str(e)}") | |
# Daha hafif bir model deneyelim | |
try: | |
backup_model = "Helsinki-NLP/opus-mt-tc-big-tr-en" | |
logging.info(f"Trying Turkish translation model for quality: {backup_model}") | |
self.quality_pipeline = pipeline( | |
"translation", | |
model=backup_model, | |
tokenizer=backup_model, | |
device=0 if self.device == "cuda" else -1 | |
) | |
logging.info("Turkish translation model loaded successfully") | |
return True | |
except Exception as e2: | |
logging.error(f"Error loading Turkish translation model: {str(e2)}") | |
try: | |
light_model = "sshleifer/distilbart-xsum-12-6" | |
logging.info(f"Trying lighter quality model: {light_model}") | |
self.quality_pipeline = pipeline( | |
"text2text-generation", | |
model=light_model, | |
tokenizer=light_model, | |
device=0 if self.device == "cuda" else -1 | |
) | |
logging.info("Lighter quality model loaded successfully") | |
return True | |
except Exception as e3: | |
logging.error(f"Error loading lighter quality model: {str(e3)}") | |
return False | |
def get_models(self): | |
""" | |
Yüklenen modelleri döndürür | |
""" | |
return { | |
"toxicity_model": self.toxicity_model, | |
"toxicity_tokenizer": self.toxicity_tokenizer, | |
"quality_pipeline": self.quality_pipeline if hasattr(self, 'quality_pipeline') else None | |
} |