""" Taken from ESPNet """ import torch from torch.functional import stft as torch_stft from torch_complex.tensor import ComplexTensor from ..Utility.utils import make_pad_mask class STFT(torch.nn.Module): def __init__(self, n_fft=512, win_length=None, hop_length=128, window="hann", center=True, normalized=False, onesided=True): super().__init__() self.n_fft = n_fft if win_length is None: self.win_length = n_fft else: self.win_length = win_length self.hop_length = hop_length self.center = center self.normalized = normalized self.onesided = onesided self.window = window def extra_repr(self): return (f"n_fft={self.n_fft}, " f"win_length={self.win_length}, " f"hop_length={self.hop_length}, " f"center={self.center}, " f"normalized={self.normalized}, " f"onesided={self.onesided}") def forward(self, input_wave, ilens=None): """ STFT forward function. Args: input_wave: (Batch, Nsamples) or (Batch, Nsample, Channels) ilens: (Batch) Returns: output: (Batch, Frames, Freq, 2) or (Batch, Frames, Channels, Freq, 2) """ bs = input_wave.size(0) if input_wave.dim() == 3: multi_channel = True # input: (Batch, Nsample, Channels) -> (Batch * Channels, Nsample) input_wave = input_wave.transpose(1, 2).reshape(-1, input_wave.size(1)) else: multi_channel = False # output: (Batch, Freq, Frames, 2=real_imag) # or (Batch, Channel, Freq, Frames, 2=real_imag) if self.window is not None: window_func = getattr(torch, f"{self.window}_window") window = window_func(self.win_length, dtype=input_wave.dtype, device=input_wave.device) else: window = None complex_output = torch_stft(input=input_wave, n_fft=self.n_fft, win_length=self.win_length, hop_length=self.hop_length, center=self.center, window=window, normalized=self.normalized, onesided=self.onesided, return_complex=True) output = torch.view_as_real(complex_output) # output: (Batch, Freq, Frames, 2=real_imag) # -> (Batch, Frames, Freq, 2=real_imag) output = output.transpose(1, 2) if multi_channel: # output: (Batch * Channel, Frames, Freq, 2=real_imag) # -> (Batch, Frame, Channel, Freq, 2=real_imag) output = output.view(bs, -1, output.size(1), output.size(2), 2).transpose(1, 2) if ilens is not None: if self.center: pad = self.win_length // 2 ilens = ilens + 2 * pad olens = (ilens - self.win_length) // self.hop_length + 1 output.masked_fill_(make_pad_mask(olens, output, 1), 0.0) else: olens = None return output, olens def inverse(self, input, ilens=None): """ Inverse STFT. Args: input: Tensor(batch, T, F, 2) or ComplexTensor(batch, T, F) ilens: (batch,) Returns: wavs: (batch, samples) ilens: (batch,) """ istft = torch.functional.istft if self.window is not None: window_func = getattr(torch, f"{self.window}_window") window = window_func(self.win_length, dtype=input.dtype, device=input.device) else: window = None if isinstance(input, ComplexTensor): input = torch.stack([input.real, input.imag], dim=-1) assert input.shape[-1] == 2 input = input.transpose(1, 2) wavs = istft(input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=window, center=self.center, normalized=self.normalized, onesided=self.onesided, length=ilens.max() if ilens is not None else ilens) return wavs, ilens